MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomacn Structured version   Visualization version   GIF version

Theorem fodomacn 8879
Description: A version of fodom 9344 that doesn't require the Axiom of Choice ax-ac 9281. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fodomacn (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomacn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foelrn 6378 . . . . 5 ((𝐹:𝐴onto𝐵𝑥𝐵) → ∃𝑦𝐴 𝑥 = (𝐹𝑦))
21ralrimiva 2966 . . . 4 (𝐹:𝐴onto𝐵 → ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦))
3 fveq2 6191 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝐹𝑦) = (𝐹‘(𝑓𝑥)))
43eqeq2d 2632 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (𝐹‘(𝑓𝑥))))
54acni3 8870 . . . 4 ((𝐴AC 𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦)) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
62, 5sylan2 491 . . 3 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
7 simpll 790 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐴AC 𝐵)
8 acnrcl 8865 . . . . 5 (𝐴AC 𝐵𝐵 ∈ V)
97, 8syl 17 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵 ∈ V)
10 simprl 794 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵𝐴)
11 fveq2 6191 . . . . . . 7 ((𝑓𝑦) = (𝑓𝑧) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧)))
12 simprr 796 . . . . . . . 8 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))
13 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑥 = 𝑦)
14 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
1514fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑦)))
1613, 15eqeq12d 2637 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑦 = (𝐹‘(𝑓𝑦))))
1716rspccva 3308 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑓𝑦)))
18 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
19 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2019fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2118, 20eqeq12d 2637 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑧 = (𝐹‘(𝑓𝑧))))
2221rspccva 3308 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵) → 𝑧 = (𝐹‘(𝑓𝑧)))
2317, 22eqeqan12d 2638 . . . . . . . . 9 (((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) ∧ (∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2423anandis 873 . . . . . . . 8 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2512, 24sylan 488 . . . . . . 7 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2611, 25syl5ibr 236 . . . . . 6 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
2726ralrimivva 2971 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
28 dff13 6512 . . . . 5 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧)))
2910, 27, 28sylanbrc 698 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵1-1𝐴)
30 f1dom2g 7973 . . . 4 ((𝐵 ∈ V ∧ 𝐴AC 𝐵𝑓:𝐵1-1𝐴) → 𝐵𝐴)
319, 7, 29, 30syl3anc 1326 . . 3 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵𝐴)
326, 31exlimddv 1863 . 2 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → 𝐵𝐴)
3332ex 450 1 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  wf 5884  1-1wf1 5885  ontowfo 5886  cfv 5888  cdom 7953  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-dom 7957  df-acn 8768
This theorem is referenced by:  fodomnum  8880  iundomg  9363
  Copyright terms: Public domain W3C validator