MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomacn Structured version   Visualization version   Unicode version

Theorem fodomacn 8879
Description: A version of fodom 9344 that doesn't require the Axiom of Choice ax-ac 9281. If  A has choice sequences of length  B, then any surjection from  A to  B can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fodomacn  |-  ( A  e. AC  B  ->  ( F : A -onto-> B  ->  B  ~<_  A ) )

Proof of Theorem fodomacn
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foelrn 6378 . . . . 5  |-  ( ( F : A -onto-> B  /\  x  e.  B
)  ->  E. y  e.  A  x  =  ( F `  y ) )
21ralrimiva 2966 . . . 4  |-  ( F : A -onto-> B  ->  A. x  e.  B  E. y  e.  A  x  =  ( F `  y ) )
3 fveq2 6191 . . . . . 6  |-  ( y  =  ( f `  x )  ->  ( F `  y )  =  ( F `  ( f `  x
) ) )
43eqeq2d 2632 . . . . 5  |-  ( y  =  ( f `  x )  ->  (
x  =  ( F `
 y )  <->  x  =  ( F `  ( f `
 x ) ) ) )
54acni3 8870 . . . 4  |-  ( ( A  e. AC  B  /\  A. x  e.  B  E. y  e.  A  x  =  ( F `  y ) )  ->  E. f ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )
62, 5sylan2 491 . . 3  |-  ( ( A  e. AC  B  /\  F : A -onto-> B )  ->  E. f ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )
7 simpll 790 . . . . 5  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  A  e. AC  B )
8 acnrcl 8865 . . . . 5  |-  ( A  e. AC  B  ->  B  e. 
_V )
97, 8syl 17 . . . 4  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  B  e.  _V )
10 simprl 794 . . . . 5  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  f : B --> A )
11 fveq2 6191 . . . . . . 7  |-  ( ( f `  y )  =  ( f `  z )  ->  ( F `  ( f `  y ) )  =  ( F `  (
f `  z )
) )
12 simprr 796 . . . . . . . 8  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  A. x  e.  B  x  =  ( F `  ( f `  x
) ) )
13 id 22 . . . . . . . . . . . 12  |-  ( x  =  y  ->  x  =  y )
14 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
f `  x )  =  ( f `  y ) )
1514fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( F `  ( f `  x ) )  =  ( F `  (
f `  y )
) )
1613, 15eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  =  ( F `
 ( f `  x ) )  <->  y  =  ( F `  ( f `
 y ) ) ) )
1716rspccva 3308 . . . . . . . . . 10  |-  ( ( A. x  e.  B  x  =  ( F `  ( f `  x
) )  /\  y  e.  B )  ->  y  =  ( F `  ( f `  y
) ) )
18 id 22 . . . . . . . . . . . 12  |-  ( x  =  z  ->  x  =  z )
19 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
2019fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( F `  ( f `  x ) )  =  ( F `  (
f `  z )
) )
2118, 20eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  =  ( F `
 ( f `  x ) )  <->  z  =  ( F `  ( f `
 z ) ) ) )
2221rspccva 3308 . . . . . . . . . 10  |-  ( ( A. x  e.  B  x  =  ( F `  ( f `  x
) )  /\  z  e.  B )  ->  z  =  ( F `  ( f `  z
) ) )
2317, 22eqeqan12d 2638 . . . . . . . . 9  |-  ( ( ( A. x  e.  B  x  =  ( F `  ( f `
 x ) )  /\  y  e.  B
)  /\  ( A. x  e.  B  x  =  ( F `  ( f `  x
) )  /\  z  e.  B ) )  -> 
( y  =  z  <-> 
( F `  (
f `  y )
)  =  ( F `
 ( f `  z ) ) ) )
2423anandis 873 . . . . . . . 8  |-  ( ( A. x  e.  B  x  =  ( F `  ( f `  x
) )  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y  =  z  <->  ( F `  ( f `  y
) )  =  ( F `  ( f `
 z ) ) ) )
2512, 24sylan 488 . . . . . . 7  |-  ( ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  (
f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y  =  z  <-> 
( F `  (
f `  y )
)  =  ( F `
 ( f `  z ) ) ) )
2611, 25syl5ibr 236 . . . . . 6  |-  ( ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  (
f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( f `  y )  =  ( f `  z )  ->  y  =  z ) )
2726ralrimivva 2971 . . . . 5  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  A. y  e.  B  A. z  e.  B  ( ( f `  y )  =  ( f `  z )  ->  y  =  z ) )
28 dff13 6512 . . . . 5  |-  ( f : B -1-1-> A  <->  ( f : B --> A  /\  A. y  e.  B  A. z  e.  B  (
( f `  y
)  =  ( f `
 z )  -> 
y  =  z ) ) )
2910, 27, 28sylanbrc 698 . . . 4  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  f : B -1-1-> A )
30 f1dom2g 7973 . . . 4  |-  ( ( B  e.  _V  /\  A  e. AC  B  /\  f : B -1-1-> A )  ->  B  ~<_  A )
319, 7, 29, 30syl3anc 1326 . . 3  |-  ( ( ( A  e. AC  B  /\  F : A -onto-> B )  /\  ( f : B --> A  /\  A. x  e.  B  x  =  ( F `  ( f `  x
) ) ) )  ->  B  ~<_  A )
326, 31exlimddv 1863 . 2  |-  ( ( A  e. AC  B  /\  F : A -onto-> B )  ->  B  ~<_  A )
3332ex 450 1  |-  ( A  e. AC  B  ->  ( F : A -onto-> B  ->  B  ~<_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   ` cfv 5888    ~<_ cdom 7953  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-dom 7957  df-acn 8768
This theorem is referenced by:  fodomnum  8880  iundomg  9363
  Copyright terms: Public domain W3C validator