Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprb Structured version   Visualization version   GIF version

Theorem fprb 31669
Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.)
Hypotheses
Ref Expression
fprb.1 𝐴 ∈ V
fprb.2 𝐵 ∈ V
Assertion
Ref Expression
fprb (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fprb
StepHypRef Expression
1 fprb.1 . . . . . . 7 𝐴 ∈ V
21prid1 4297 . . . . . 6 𝐴 ∈ {𝐴, 𝐵}
3 ffvelrn 6357 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ 𝑅)
42, 3mpan2 707 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐴) ∈ 𝑅)
54adantr 481 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐴) ∈ 𝑅)
6 fprb.2 . . . . . . 7 𝐵 ∈ V
76prid2 4298 . . . . . 6 𝐵 ∈ {𝐴, 𝐵}
8 ffvelrn 6357 . . . . . 6 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ 𝑅)
97, 8mpan2 707 . . . . 5 (𝐹:{𝐴, 𝐵}⟶𝑅 → (𝐹𝐵) ∈ 𝑅)
109adantr 481 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹𝐵) ∈ 𝑅)
11 fvex 6201 . . . . . . . 8 (𝐹𝐴) ∈ V
121, 11fvpr1 6456 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
13 fvex 6201 . . . . . . . 8 (𝐹𝐵) ∈ V
146, 13fvpr2 6457 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
15 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
16 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴))
1715, 16eqeq12d 2637 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴)))
18 eqcom 2629 . . . . . . . . 9 ((𝐹𝐴) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴))
1917, 18syl6bb 276 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴)))
20 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
21 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝐵 → ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵))
2220, 21eqeq12d 2637 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵)))
23 eqcom 2629 . . . . . . . . 9 ((𝐹𝐵) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵))
2422, 23syl6bb 276 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
251, 6, 19, 24ralpr 4238 . . . . . . 7 (∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥) ↔ (({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐴) = (𝐹𝐴) ∧ ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝐵) = (𝐹𝐵)))
2612, 14, 25sylanbrc 698 . . . . . 6 (𝐴𝐵 → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
2726adantl 482 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥))
28 ffn 6045 . . . . . 6 (𝐹:{𝐴, 𝐵}⟶𝑅𝐹 Fn {𝐴, 𝐵})
291, 6, 11, 13fpr 6421 . . . . . . 7 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}:{𝐴, 𝐵}⟶{(𝐹𝐴), (𝐹𝐵)})
30 ffn 6045 . . . . . . 7 ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}:{𝐴, 𝐵}⟶{(𝐹𝐴), (𝐹𝐵)} → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵})
3129, 30syl 17 . . . . . 6 (𝐴𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵})
32 eqfnfv 6311 . . . . . 6 ((𝐹 Fn {𝐴, 𝐵} ∧ {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} Fn {𝐴, 𝐵}) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3328, 31, 32syl2an 494 . . . . 5 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩} ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝐹𝑥) = ({⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}‘𝑥)))
3427, 33mpbird 247 . . . 4 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
35 opeq2 4403 . . . . . . 7 (𝑥 = (𝐹𝐴) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, (𝐹𝐴)⟩)
3635preq1d 4274 . . . . . 6 (𝑥 = (𝐹𝐴) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩})
3736eqeq2d 2632 . . . . 5 (𝑥 = (𝐹𝐴) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩}))
38 opeq2 4403 . . . . . . 7 (𝑦 = (𝐹𝐵) → ⟨𝐵, 𝑦⟩ = ⟨𝐵, (𝐹𝐵)⟩)
3938preq2d 4275 . . . . . 6 (𝑦 = (𝐹𝐵) → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
4039eqeq2d 2632 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, 𝑦⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
4137, 40rspc2ev 3324 . . . 4 (((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
425, 10, 34, 41syl3anc 1326 . . 3 ((𝐹:{𝐴, 𝐵}⟶𝑅𝐴𝐵) → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})
4342expcom 451 . 2 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 → ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
44 vex 3203 . . . . . . 7 𝑥 ∈ V
45 vex 3203 . . . . . . 7 𝑦 ∈ V
461, 6, 44, 45fpr 6421 . . . . . 6 (𝐴𝐵 → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦})
47 prssi 4353 . . . . . 6 ((𝑥𝑅𝑦𝑅) → {𝑥, 𝑦} ⊆ 𝑅)
48 fss 6056 . . . . . 6 (({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
4946, 47, 48syl2an 494 . . . . 5 ((𝐴𝐵 ∧ (𝑥𝑅𝑦𝑅)) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅)
5049ex 450 . . . 4 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
51 feq1 6026 . . . . 5 (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅))
5251biimprcd 240 . . . 4 ({⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}:{𝐴, 𝐵}⟶𝑅 → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5350, 52syl6 35 . . 3 (𝐴𝐵 → ((𝑥𝑅𝑦𝑅) → (𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅)))
5453rexlimdvv 3037 . 2 (𝐴𝐵 → (∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩} → 𝐹:{𝐴, 𝐵}⟶𝑅))
5543, 54impbid 202 1 (𝐴𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥𝑅𝑦𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  {cpr 4179  cop 4183   Fn wfn 5883  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator