| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprb | Structured version Visualization version Unicode version | ||
| Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| fprb.1 |
|
| fprb.2 |
|
| Ref | Expression |
|---|---|
| fprb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprb.1 |
. . . . . . 7
| |
| 2 | 1 | prid1 4297 |
. . . . . 6
|
| 3 | ffvelrn 6357 |
. . . . . 6
| |
| 4 | 2, 3 | mpan2 707 |
. . . . 5
|
| 5 | 4 | adantr 481 |
. . . 4
|
| 6 | fprb.2 |
. . . . . . 7
| |
| 7 | 6 | prid2 4298 |
. . . . . 6
|
| 8 | ffvelrn 6357 |
. . . . . 6
| |
| 9 | 7, 8 | mpan2 707 |
. . . . 5
|
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | fvex 6201 |
. . . . . . . 8
| |
| 12 | 1, 11 | fvpr1 6456 |
. . . . . . 7
|
| 13 | fvex 6201 |
. . . . . . . 8
| |
| 14 | 6, 13 | fvpr2 6457 |
. . . . . . 7
|
| 15 | fveq2 6191 |
. . . . . . . . . 10
| |
| 16 | fveq2 6191 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | eqeq12d 2637 |
. . . . . . . . 9
|
| 18 | eqcom 2629 |
. . . . . . . . 9
| |
| 19 | 17, 18 | syl6bb 276 |
. . . . . . . 8
|
| 20 | fveq2 6191 |
. . . . . . . . . 10
| |
| 21 | fveq2 6191 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqeq12d 2637 |
. . . . . . . . 9
|
| 23 | eqcom 2629 |
. . . . . . . . 9
| |
| 24 | 22, 23 | syl6bb 276 |
. . . . . . . 8
|
| 25 | 1, 6, 19, 24 | ralpr 4238 |
. . . . . . 7
|
| 26 | 12, 14, 25 | sylanbrc 698 |
. . . . . 6
|
| 27 | 26 | adantl 482 |
. . . . 5
|
| 28 | ffn 6045 |
. . . . . 6
| |
| 29 | 1, 6, 11, 13 | fpr 6421 |
. . . . . . 7
|
| 30 | ffn 6045 |
. . . . . . 7
| |
| 31 | 29, 30 | syl 17 |
. . . . . 6
|
| 32 | eqfnfv 6311 |
. . . . . 6
| |
| 33 | 28, 31, 32 | syl2an 494 |
. . . . 5
|
| 34 | 27, 33 | mpbird 247 |
. . . 4
|
| 35 | opeq2 4403 |
. . . . . . 7
| |
| 36 | 35 | preq1d 4274 |
. . . . . 6
|
| 37 | 36 | eqeq2d 2632 |
. . . . 5
|
| 38 | opeq2 4403 |
. . . . . . 7
| |
| 39 | 38 | preq2d 4275 |
. . . . . 6
|
| 40 | 39 | eqeq2d 2632 |
. . . . 5
|
| 41 | 37, 40 | rspc2ev 3324 |
. . . 4
|
| 42 | 5, 10, 34, 41 | syl3anc 1326 |
. . 3
|
| 43 | 42 | expcom 451 |
. 2
|
| 44 | vex 3203 |
. . . . . . 7
| |
| 45 | vex 3203 |
. . . . . . 7
| |
| 46 | 1, 6, 44, 45 | fpr 6421 |
. . . . . 6
|
| 47 | prssi 4353 |
. . . . . 6
| |
| 48 | fss 6056 |
. . . . . 6
| |
| 49 | 46, 47, 48 | syl2an 494 |
. . . . 5
|
| 50 | 49 | ex 450 |
. . . 4
|
| 51 | feq1 6026 |
. . . . 5
| |
| 52 | 51 | biimprcd 240 |
. . . 4
|
| 53 | 50, 52 | syl6 35 |
. . 3
|
| 54 | 53 | rexlimdvv 3037 |
. 2
|
| 55 | 43, 54 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |