MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 9475
Description: Lemma for canthp1 9476. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1𝑜𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
canthp1lem2.3 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1𝑜𝐴)
2 relsdom 7962 . . . . . . 7 Rel ≺
32brrelex2i 5159 . . . . . 6 (1𝑜𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
5 pwexg 4850 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
64, 5syl 17 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
7 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
8 f1oeng 7974 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
96, 7, 8syl2anc 693 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
10 ensym 8005 . . 3 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
119, 10syl 17 . 2 (𝜑 → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
12 canth2g 8114 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
134, 12syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
14 sdomen2 8105 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
159, 14syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
1613, 15mpbid 222 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 +𝑐 1𝑜))
17 sdomnen 7984 . . . . . . . . 9 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
19 omelon 8543 . . . . . . . . . . . 12 ω ∈ On
20 onenon 8775 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2119, 20ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
22 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
23 dff1o3 6143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) ↔ (𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ Fun 𝐹))
2423simprbi 480 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → Fun 𝐹)
257, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
26 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
277, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
28 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹 Fn 𝒫 𝐴)
29 fnresdm 6000 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
30 foeq1 6111 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
317, 28, 29, 304syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
3227, 31mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
33 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
34 f1osng 6177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
354, 33, 34sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
367, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
37 pwidg 4173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
384, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
39 fnressn 6425 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
4036, 38, 39syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
41 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩} → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4335, 42mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
44 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
46 resdif 6157 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
4725, 32, 45, 46syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
48 f1oco 6159 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4922, 47, 48syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
50 resco 5639 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
51 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5349, 52sylibr 224 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
54 f1of 6137 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
56 0elpw 4834 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
58 sdom0 8092 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1𝑜 ≺ ∅
59 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1𝑜 ≺ ∅ ↔ 1𝑜𝐴))
6058, 59mtbii 316 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1𝑜𝐴)
6160necon2ai 2823 . . . . . . . . . . . . . . . . . . . . . 22 (1𝑜𝐴 → ∅ ≠ 𝐴)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6362ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
64 eldifsn 4317 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6557, 63, 64sylanbrc 698 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
66 simplr 792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
67 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6867neqned 2801 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
69 eldifsn 4317 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
7066, 68, 69sylanbrc 698 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
7165, 70ifclda 4120 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
72 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
7371, 72fmptd 6385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
74 fco 6058 . . . . . . . . . . . . . . . . 17 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7555, 73, 74syl2anc 693 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
76 frn 6053 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
7773, 76syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
78 cores 5638 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7977, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
80 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
8179, 80syl6eqr 2674 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
8281feq1d 6030 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
8375, 82mpbid 222 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
84 inss1 3833 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
8584a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
86 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
87 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
88 eqid 2622 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8986, 87, 88canth4 9469 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
904, 83, 85, 89syl3anc 1326 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9190simp1d 1073 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
9290simp2d 1074 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
9392pssned 3705 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
9493necomd 2849 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
9590simp3d 1075 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9680fveq1i 6192 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9780fveq1i 6192 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9895, 96, 973eqtr3g 2679 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
99 elpw2g 4827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1004, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
10191, 100mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
102 fvco3 6275 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ 𝐵 ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10373, 101, 102syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10492pssssd 3704 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
105104, 91sstrd 3613 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
106 elpw2g 4827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
1074, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
108105, 107mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
109 fvco3 6275 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11073, 108, 109syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11198, 103, 1103eqtr3d 2664 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
112111adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
113 ifcl 4130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
11456, 101, 113sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
115 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
116 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵𝑥 = 𝐵)
117115, 116ifbieq2d 4111 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
118117, 72fvmptg 6280 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ 𝒫 𝐴 ∧ if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
119101, 114, 118syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
120 pssne 3703 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
121120neneqd 2799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
122121iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
123119, 122sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
124123fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
125 ifcl 4130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
12656, 108, 125sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
127 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
128 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
129127, 128ifbieq2d 4111 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
130129, 72fvmptg 6280 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
131108, 126, 130syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
132131adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
133 sspsstr 3712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
134104, 133sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
135134pssned 3705 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
136135neneqd 2799 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
137136iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
138132, 137eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
139138fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
140112, 124, 1393eqtr3d 2664 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
141101, 120anim12i 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
142 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
143141, 142sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
144 fvres 6207 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
146108adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
147 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
148146, 135, 147sylanbrc 698 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
149 fvres 6207 . . . . . . . . . . . . . . . . . . . 20 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
151140, 145, 1503eqtr4d 2666 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
152 f1of1 6136 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
15353, 152syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
154153adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
155 f1fveq 6519 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
156154, 143, 148, 155syl12anc 1324 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
157151, 156mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
158157ex 450 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
159158necon3ad 2807 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
16094, 159mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
161 npss 3717 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
162160, 161sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
16391, 162mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
164 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 𝐵 = 𝐵
165 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑊𝐵) = (𝑊𝐵)
166164, 165pm3.2i 471 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
16784sseli 3599 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
168 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
16983, 167, 168syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
17086, 4, 169, 87fpwwe 9468 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
171166, 170mpbiri 248 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
172171simpld 475 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝑊(𝑊𝐵))
17386, 4fpwwelem 9467 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
174172, 173mpbid 222 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
175174simprd 479 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))
176175simpld 475 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
177 fvex 6201 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
178 weeq1 5102 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
179177, 178spcev 3300 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
180176, 179syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
181 ween 8858 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
182180, 181sylibr 224 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
183163, 182eqeltrrd 2702 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
184 domtri2 8815 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
18521, 183, 184sylancr 695 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
186 infcda1 9015 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
187185, 186syl6bir 244 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 +𝑐 1𝑜) ≈ 𝐴))
188 ensym 8005 . . . . . . . . 9 ((𝐴 +𝑐 1𝑜) ≈ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜))
189187, 188syl6 35 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 +𝑐 1𝑜)))
19018, 189mt3d 140 . . . . . . 7 (𝜑𝐴 ≺ ω)
191 2onn 7720 . . . . . . . 8 2𝑜 ∈ ω
192 nnsdom 8551 . . . . . . . 8 (2𝑜 ∈ ω → 2𝑜 ≺ ω)
193191, 192ax-mp 5 . . . . . . 7 2𝑜 ≺ ω
194 cdafi 9012 . . . . . . 7 ((𝐴 ≺ ω ∧ 2𝑜 ≺ ω) → (𝐴 +𝑐 2𝑜) ≺ ω)
195190, 193, 194sylancl 694 . . . . . 6 (𝜑 → (𝐴 +𝑐 2𝑜) ≺ ω)
196 isfinite 8549 . . . . . 6 ((𝐴 +𝑐 2𝑜) ∈ Fin ↔ (𝐴 +𝑐 2𝑜) ≺ ω)
197195, 196sylibr 224 . . . . 5 (𝜑 → (𝐴 +𝑐 2𝑜) ∈ Fin)
198 sssucid 5802 . . . . . . . . . 10 1𝑜 ⊆ suc 1𝑜
199 df-2o 7561 . . . . . . . . . 10 2𝑜 = suc 1𝑜
200198, 199sseqtr4i 3638 . . . . . . . . 9 1𝑜 ⊆ 2𝑜
201 xpss1 5228 . . . . . . . . 9 (1𝑜 ⊆ 2𝑜 → (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}))
202200, 201ax-mp 5 . . . . . . . 8 (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜})
203 unss2 3784 . . . . . . . 8 ((1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
204202, 203mp1i 13 . . . . . . 7 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
205 ssun2 3777 . . . . . . . . 9 (2𝑜 × {1𝑜}) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
206 1onn 7719 . . . . . . . . . . . . 13 1𝑜 ∈ ω
207206elexi 3213 . . . . . . . . . . . 12 1𝑜 ∈ V
208207sucid 5804 . . . . . . . . . . 11 1𝑜 ∈ suc 1𝑜
209208, 199eleqtrri 2700 . . . . . . . . . 10 1𝑜 ∈ 2𝑜
210207snid 4208 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
211 opelxpi 5148 . . . . . . . . . 10 ((1𝑜 ∈ 2𝑜 ∧ 1𝑜 ∈ {1𝑜}) → ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜}))
212209, 210, 211mp2an 708 . . . . . . . . 9 ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜})
213205, 212sselii 3600 . . . . . . . 8 ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
214 1n0 7575 . . . . . . . . . . . 12 1𝑜 ≠ ∅
215214neii 2796 . . . . . . . . . . 11 ¬ 1𝑜 = ∅
216 opelxp2 5151 . . . . . . . . . . . 12 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 ∈ {∅})
217 elsni 4194 . . . . . . . . . . . 12 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
218216, 217syl 17 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 = ∅)
219215, 218mto 188 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅})
220 nnord 7073 . . . . . . . . . . . 12 (1𝑜 ∈ ω → Ord 1𝑜)
221 ordirr 5741 . . . . . . . . . . . 12 (Ord 1𝑜 → ¬ 1𝑜 ∈ 1𝑜)
222206, 220, 221mp2b 10 . . . . . . . . . . 11 ¬ 1𝑜 ∈ 1𝑜
223 opelxp1 5150 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}) → 1𝑜 ∈ 1𝑜)
224222, 223mto 188 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})
225219, 224pm3.2ni 899 . . . . . . . . 9 ¬ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}))
226 elun 3753 . . . . . . . . 9 (⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ↔ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})))
227225, 226mtbir 313 . . . . . . . 8 ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
228 ssnelpss 3718 . . . . . . . 8 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) ∧ ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
229213, 227, 228mp2ani 714 . . . . . . 7 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
230204, 229syl 17 . . . . . 6 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
231 cdaval 8992 . . . . . . . 8 ((𝐴 ∈ V ∧ 1𝑜 ∈ ω) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
2324, 206, 231sylancl 694 . . . . . . 7 (𝜑 → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
233 cdaval 8992 . . . . . . . 8 ((𝐴 ∈ V ∧ 2𝑜 ∈ ω) → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
2344, 191, 233sylancl 694 . . . . . . 7 (𝜑 → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
235232, 234psseq12d 3701 . . . . . 6 (𝜑 → ((𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜) ↔ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
236230, 235mpbird 247 . . . . 5 (𝜑 → (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜))
237 php3 8146 . . . . 5 (((𝐴 +𝑐 2𝑜) ∈ Fin ∧ (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜)) → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
238197, 236, 237syl2anc 693 . . . 4 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
239 canthp1lem1 9474 . . . . 5 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
2401, 239syl 17 . . . 4 (𝜑 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
241 sdomdomtr 8093 . . . 4 (((𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜) ∧ (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
242238, 240, 241syl2anc 693 . . 3 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
243 sdomnen 7984 . . 3 ((𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
244242, 243syl 17 . 2 (𝜑 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
24511, 244pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  wpss 3575  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  {copab 4712  cmpt 4729   We wwe 5072   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Ord word 5722  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  cardccrd 8761   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  canthp1  9476
  Copyright terms: Public domain W3C validator