Proof of Theorem fresaunres2
| Step | Hyp | Ref
| Expression |
| 1 | | ffn 6045 |
. . . 4
⊢ (𝐹:𝐴⟶𝐶 → 𝐹 Fn 𝐴) |
| 2 | | ffn 6045 |
. . . 4
⊢ (𝐺:𝐵⟶𝐶 → 𝐺 Fn 𝐵) |
| 3 | | id 22 |
. . . 4
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
| 4 | | resasplit 6074 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
| 5 | 1, 2, 3, 4 | syl3an 1368 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
| 6 | 5 | reseq1d 5395 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ↾ 𝐵)) |
| 7 | | resundir 5411 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ↾ 𝐵) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ↾ 𝐵)) |
| 8 | | inss2 3834 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 9 | | resabs2 5429 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵)) |
| 11 | | resundir 5411 |
. . . . 5
⊢ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ↾ 𝐵) = (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵)) |
| 12 | 10, 11 | uneq12i 3765 |
. . . 4
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ↾ 𝐵)) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵))) |
| 13 | | dmres 5419 |
. . . . . . . . 9
⊢ dom
((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = (𝐵 ∩ dom (𝐹 ↾ (𝐴 ∖ 𝐵))) |
| 14 | | dmres 5419 |
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∩ dom 𝐹) |
| 15 | 14 | ineq2i 3811 |
. . . . . . . . . 10
⊢ (𝐵 ∩ dom (𝐹 ↾ (𝐴 ∖ 𝐵))) = (𝐵 ∩ ((𝐴 ∖ 𝐵) ∩ dom 𝐹)) |
| 16 | | disjdif 4040 |
. . . . . . . . . . . 12
⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ |
| 17 | 16 | ineq1i 3810 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ (𝐴 ∖ 𝐵)) ∩ dom 𝐹) = (∅ ∩ dom 𝐹) |
| 18 | | inass 3823 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ (𝐴 ∖ 𝐵)) ∩ dom 𝐹) = (𝐵 ∩ ((𝐴 ∖ 𝐵) ∩ dom 𝐹)) |
| 19 | | inss1 3833 |
. . . . . . . . . . . 12
⊢ (∅
∩ dom 𝐹) ⊆
∅ |
| 20 | | 0ss 3972 |
. . . . . . . . . . . 12
⊢ ∅
⊆ (∅ ∩ dom 𝐹) |
| 21 | 19, 20 | eqssi 3619 |
. . . . . . . . . . 11
⊢ (∅
∩ dom 𝐹) =
∅ |
| 22 | 17, 18, 21 | 3eqtr3i 2652 |
. . . . . . . . . 10
⊢ (𝐵 ∩ ((𝐴 ∖ 𝐵) ∩ dom 𝐹)) = ∅ |
| 23 | 15, 22 | eqtri 2644 |
. . . . . . . . 9
⊢ (𝐵 ∩ dom (𝐹 ↾ (𝐴 ∖ 𝐵))) = ∅ |
| 24 | 13, 23 | eqtri 2644 |
. . . . . . . 8
⊢ dom
((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅ |
| 25 | | relres 5426 |
. . . . . . . . 9
⊢ Rel
((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) |
| 26 | | reldm0 5343 |
. . . . . . . . 9
⊢ (Rel
((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) → (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅)) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . 8
⊢ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅) |
| 28 | 24, 27 | mpbir 221 |
. . . . . . 7
⊢ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) = ∅ |
| 29 | | difss 3737 |
. . . . . . . 8
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
| 30 | | resabs2 5429 |
. . . . . . . 8
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵 ∖ 𝐴))) |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵 ∖ 𝐴)) |
| 32 | 28, 31 | uneq12i 3765 |
. . . . . 6
⊢ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵)) = (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
| 33 | 32 | uneq2i 3764 |
. . . . 5
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
| 34 | | simp3 1063 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
| 35 | 34 | uneq1d 3766 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
| 36 | | uncom 3757 |
. . . . . . . . . 10
⊢ (∅
∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐵 ∖ 𝐴)) ∪ ∅) |
| 37 | | un0 3967 |
. . . . . . . . . 10
⊢ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ∪ ∅) = (𝐺 ↾ (𝐵 ∖ 𝐴)) |
| 38 | 36, 37 | eqtri 2644 |
. . . . . . . . 9
⊢ (∅
∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = (𝐺 ↾ (𝐵 ∖ 𝐴)) |
| 39 | 38 | uneq2i 3764 |
. . . . . . . 8
⊢ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
| 40 | | resundi 5410 |
. . . . . . . . 9
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
| 41 | | incom 3805 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| 42 | 41 | uneq1i 3763 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) |
| 43 | | inundif 4046 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
| 44 | 42, 43 | eqtri 2644 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
| 45 | 44 | reseq2i 5393 |
. . . . . . . . . 10
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (𝐺 ↾ 𝐵) |
| 46 | | fnresdm 6000 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) |
| 47 | 2, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺:𝐵⟶𝐶 → (𝐺 ↾ 𝐵) = 𝐺) |
| 48 | 47 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) → (𝐺 ↾ 𝐵) = 𝐺) |
| 49 | 45, 48 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) → (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = 𝐺) |
| 50 | 40, 49 | syl5eqr 2670 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) → ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = 𝐺) |
| 51 | 39, 50 | syl5eq 2668 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) → ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = 𝐺) |
| 52 | 51 | 3adant3 1081 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = 𝐺) |
| 53 | 35, 52 | eqtrd 2656 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = 𝐺) |
| 54 | 33, 53 | syl5eq 2668 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵 ∖ 𝐴)) ↾ 𝐵))) = 𝐺) |
| 55 | 12, 54 | syl5eq 2668 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ↾ 𝐵)) = 𝐺) |
| 56 | 7, 55 | syl5eq 2668 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ↾ 𝐵) = 𝐺) |
| 57 | 6, 56 | eqtrd 2656 |
1
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |