| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresaunres2 | Structured version Visualization version Unicode version | ||
| Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| fresaunres2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6045 |
. . . 4
| |
| 2 | ffn 6045 |
. . . 4
| |
| 3 | id 22 |
. . . 4
| |
| 4 | resasplit 6074 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1368 |
. . 3
|
| 6 | 5 | reseq1d 5395 |
. 2
|
| 7 | resundir 5411 |
. . 3
| |
| 8 | inss2 3834 |
. . . . . 6
| |
| 9 | resabs2 5429 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | resundir 5411 |
. . . . 5
| |
| 12 | 10, 11 | uneq12i 3765 |
. . . 4
|
| 13 | dmres 5419 |
. . . . . . . . 9
| |
| 14 | dmres 5419 |
. . . . . . . . . . 11
| |
| 15 | 14 | ineq2i 3811 |
. . . . . . . . . 10
|
| 16 | disjdif 4040 |
. . . . . . . . . . . 12
| |
| 17 | 16 | ineq1i 3810 |
. . . . . . . . . . 11
|
| 18 | inass 3823 |
. . . . . . . . . . 11
| |
| 19 | inss1 3833 |
. . . . . . . . . . . 12
| |
| 20 | 0ss 3972 |
. . . . . . . . . . . 12
| |
| 21 | 19, 20 | eqssi 3619 |
. . . . . . . . . . 11
|
| 22 | 17, 18, 21 | 3eqtr3i 2652 |
. . . . . . . . . 10
|
| 23 | 15, 22 | eqtri 2644 |
. . . . . . . . 9
|
| 24 | 13, 23 | eqtri 2644 |
. . . . . . . 8
|
| 25 | relres 5426 |
. . . . . . . . 9
| |
| 26 | reldm0 5343 |
. . . . . . . . 9
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . 8
|
| 28 | 24, 27 | mpbir 221 |
. . . . . . 7
|
| 29 | difss 3737 |
. . . . . . . 8
| |
| 30 | resabs2 5429 |
. . . . . . . 8
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . 7
|
| 32 | 28, 31 | uneq12i 3765 |
. . . . . 6
|
| 33 | 32 | uneq2i 3764 |
. . . . 5
|
| 34 | simp3 1063 |
. . . . . . 7
| |
| 35 | 34 | uneq1d 3766 |
. . . . . 6
|
| 36 | uncom 3757 |
. . . . . . . . . 10
| |
| 37 | un0 3967 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | eqtri 2644 |
. . . . . . . . 9
|
| 39 | 38 | uneq2i 3764 |
. . . . . . . 8
|
| 40 | resundi 5410 |
. . . . . . . . 9
| |
| 41 | incom 3805 |
. . . . . . . . . . . . 13
| |
| 42 | 41 | uneq1i 3763 |
. . . . . . . . . . . 12
|
| 43 | inundif 4046 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | eqtri 2644 |
. . . . . . . . . . 11
|
| 45 | 44 | reseq2i 5393 |
. . . . . . . . . 10
|
| 46 | fnresdm 6000 |
. . . . . . . . . . . 12
| |
| 47 | 2, 46 | syl 17 |
. . . . . . . . . . 11
|
| 48 | 47 | adantl 482 |
. . . . . . . . . 10
|
| 49 | 45, 48 | syl5eq 2668 |
. . . . . . . . 9
|
| 50 | 40, 49 | syl5eqr 2670 |
. . . . . . . 8
|
| 51 | 39, 50 | syl5eq 2668 |
. . . . . . 7
|
| 52 | 51 | 3adant3 1081 |
. . . . . 6
|
| 53 | 35, 52 | eqtrd 2656 |
. . . . 5
|
| 54 | 33, 53 | syl5eq 2668 |
. . . 4
|
| 55 | 12, 54 | syl5eq 2668 |
. . 3
|
| 56 | 7, 55 | syl5eq 2668 |
. 2
|
| 57 | 6, 56 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-dm 5124 df-res 5126 df-fun 5890 df-fn 5891 df-f 5892 |
| This theorem is referenced by: fresaunres1 6077 mapunen 8129 ptuncnv 21610 cvmliftlem10 31276 elmapresaunres2 37335 |
| Copyright terms: Public domain | W3C validator |