![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcinv | Structured version Visualization version GIF version |
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcinv.b | ⊢ 𝐵 = (Base‘𝐷) |
funcinv.s | ⊢ 𝐼 = (Inv‘𝐷) |
funcinv.t | ⊢ 𝐽 = (Inv‘𝐸) |
funcinv.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funcinv.m | ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) |
Ref | Expression |
---|---|
funcinv | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2622 | . . 3 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
3 | eqid 2622 | . . 3 ⊢ (Sect‘𝐸) = (Sect‘𝐸) | |
4 | funcinv.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | funcinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | funcinv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | funcinv.m | . . . . 5 ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) | |
8 | funcinv.s | . . . . . 6 ⊢ 𝐼 = (Inv‘𝐷) | |
9 | df-br 4654 | . . . . . . . . 9 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
10 | 4, 9 | sylib 208 | . . . . . . . 8 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
11 | funcrcl 16523 | . . . . . . . 8 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
13 | 12 | simpld 475 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | 1, 8, 13, 5, 6, 2 | isinv 16420 | . . . . 5 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))) |
15 | 7, 14 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)) |
16 | 15 | simpld 475 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Sect‘𝐷)𝑌)𝑁) |
17 | 1, 2, 3, 4, 5, 6, 16 | funcsect 16532 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
18 | 15 | simprd 479 | . . 3 ⊢ (𝜑 → 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀) |
19 | 1, 2, 3, 4, 6, 5, 18 | funcsect 16532 | . 2 ⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) |
20 | eqid 2622 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
21 | funcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐸) | |
22 | 12 | simprd 479 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
23 | 1, 20, 4 | funcf1 16526 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
24 | 23, 5 | ffvelrnd 6360 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
25 | 23, 6 | ffvelrnd 6360 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
26 | 20, 21, 22, 24, 25, 3 | isinv 16420 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
27 | 17, 19, 26 | mpbir2and 957 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Catccat 16325 Sectcsect 16404 Invcinv 16405 Func cfunc 16514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-ixp 7909 df-sect 16407 df-inv 16408 df-func 16518 |
This theorem is referenced by: funciso 16534 |
Copyright terms: Public domain | W3C validator |