MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcinv Structured version   Visualization version   Unicode version

Theorem funcinv 16533
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funcinv.b  |-  B  =  ( Base `  D
)
funcinv.s  |-  I  =  (Inv `  D )
funcinv.t  |-  J  =  (Inv `  E )
funcinv.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcinv.x  |-  ( ph  ->  X  e.  B )
funcinv.y  |-  ( ph  ->  Y  e.  B )
funcinv.m  |-  ( ph  ->  M ( X I Y ) N )
Assertion
Ref Expression
funcinv  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) )

Proof of Theorem funcinv
StepHypRef Expression
1 funcinv.b . . 3  |-  B  =  ( Base `  D
)
2 eqid 2622 . . 3  |-  (Sect `  D )  =  (Sect `  D )
3 eqid 2622 . . 3  |-  (Sect `  E )  =  (Sect `  E )
4 funcinv.f . . 3  |-  ( ph  ->  F ( D  Func  E ) G )
5 funcinv.x . . 3  |-  ( ph  ->  X  e.  B )
6 funcinv.y . . 3  |-  ( ph  ->  Y  e.  B )
7 funcinv.m . . . . 5  |-  ( ph  ->  M ( X I Y ) N )
8 funcinv.s . . . . . 6  |-  I  =  (Inv `  D )
9 df-br 4654 . . . . . . . . 9  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
104, 9sylib 208 . . . . . . . 8  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
11 funcrcl 16523 . . . . . . . 8  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1210, 11syl 17 . . . . . . 7  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1312simpld 475 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
141, 8, 13, 5, 6, 2isinv 16420 . . . . 5  |-  ( ph  ->  ( M ( X I Y ) N  <-> 
( M ( X (Sect `  D ) Y ) N  /\  N ( Y (Sect `  D ) X ) M ) ) )
157, 14mpbid 222 . . . 4  |-  ( ph  ->  ( M ( X (Sect `  D ) Y ) N  /\  N ( Y (Sect `  D ) X ) M ) )
1615simpld 475 . . 3  |-  ( ph  ->  M ( X (Sect `  D ) Y ) N )
171, 2, 3, 4, 5, 6, 16funcsect 16532 . 2  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) (Sect `  E ) ( F `
 Y ) ) ( ( Y G X ) `  N
) )
1815simprd 479 . . 3  |-  ( ph  ->  N ( Y (Sect `  D ) X ) M )
191, 2, 3, 4, 6, 5, 18funcsect 16532 . 2  |-  ( ph  ->  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  E ) ( F `
 X ) ) ( ( X G Y ) `  M
) )
20 eqid 2622 . . 3  |-  ( Base `  E )  =  (
Base `  E )
21 funcinv.t . . 3  |-  J  =  (Inv `  E )
2212simprd 479 . . 3  |-  ( ph  ->  E  e.  Cat )
231, 20, 4funcf1 16526 . . . 4  |-  ( ph  ->  F : B --> ( Base `  E ) )
2423, 5ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  E ) )
2523, 6ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  E ) )
2620, 21, 22, 24, 25, 3isinv 16420 . 2  |-  ( ph  ->  ( ( ( X G Y ) `  M ) ( ( F `  X ) J ( F `  Y ) ) ( ( Y G X ) `  N )  <-> 
( ( ( X G Y ) `  M ) ( ( F `  X ) (Sect `  E )
( F `  Y
) ) ( ( Y G X ) `
 N )  /\  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  E ) ( F `
 X ) ) ( ( X G Y ) `  M
) ) ) )
2717, 19, 26mpbir2and 957 1  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325  Sectcsect 16404  Invcinv 16405    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-sect 16407  df-inv 16408  df-func 16518
This theorem is referenced by:  funciso  16534
  Copyright terms: Public domain W3C validator