MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmo Structured version   Visualization version   GIF version

Theorem funmo 5904
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffun6 5903 . . . . . 6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
21simplbi 476 . . . . 5 (Fun 𝐹 → Rel 𝐹)
3 brrelex 5156 . . . . . 6 ((Rel 𝐹𝐴𝐹𝑦) → 𝐴 ∈ V)
43ex 450 . . . . 5 (Rel 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
52, 4syl 17 . . . 4 (Fun 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
65ancrd 577 . . 3 (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
76alrimiv 1855 . 2 (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
8 breq1 4656 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98mobidv 2491 . . . . . 6 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
109imbi2d 330 . . . . 5 (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)))
111simprbi 480 . . . . . 6 (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
121119.21bi 2059 . . . . 5 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
1310, 12vtoclg 3266 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))
1413com12 32 . . 3 (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
15 moanimv 2531 . . 3 (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
1614, 15sylibr 224 . 2 (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦))
17 moim 2519 . 2 (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦))
187, 16, 17sylc 65 1 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  Vcvv 3200   class class class wbr 4653  Rel wrel 5119  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  funeu  5913  funco  5928  fununmo  5933  imadif  5973  fneu  5995  dff3  6372  shftfn  13813
  Copyright terms: Public domain W3C validator