MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmo Structured version   Visualization version   Unicode version

Theorem funmo 5904
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo  |-  ( Fun 
F  ->  E* y  A F y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funmo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dffun6 5903 . . . . . 6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
21simplbi 476 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
3 brrelex 5156 . . . . . 6  |-  ( ( Rel  F  /\  A F y )  ->  A  e.  _V )
43ex 450 . . . . 5  |-  ( Rel 
F  ->  ( A F y  ->  A  e.  _V ) )
52, 4syl 17 . . . 4  |-  ( Fun 
F  ->  ( A F y  ->  A  e.  _V ) )
65ancrd 577 . . 3  |-  ( Fun 
F  ->  ( A F y  ->  ( A  e.  _V  /\  A F y ) ) )
76alrimiv 1855 . 2  |-  ( Fun 
F  ->  A. y
( A F y  ->  ( A  e. 
_V  /\  A F
y ) ) )
8 breq1 4656 . . . . . . 7  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
98mobidv 2491 . . . . . 6  |-  ( x  =  A  ->  ( E* y  x F
y  <->  E* y  A F y ) )
109imbi2d 330 . . . . 5  |-  ( x  =  A  ->  (
( Fun  F  ->  E* y  x F y )  <->  ( Fun  F  ->  E* y  A F y ) ) )
111simprbi 480 . . . . . 6  |-  ( Fun 
F  ->  A. x E* y  x F
y )
121119.21bi 2059 . . . . 5  |-  ( Fun 
F  ->  E* y  x F y )
1310, 12vtoclg 3266 . . . 4  |-  ( A  e.  _V  ->  ( Fun  F  ->  E* y  A F y ) )
1413com12 32 . . 3  |-  ( Fun 
F  ->  ( A  e.  _V  ->  E* y  A F y ) )
15 moanimv 2531 . . 3  |-  ( E* y ( A  e. 
_V  /\  A F
y )  <->  ( A  e.  _V  ->  E* y  A F y ) )
1614, 15sylibr 224 . 2  |-  ( Fun 
F  ->  E* y
( A  e.  _V  /\  A F y ) )
17 moim 2519 . 2  |-  ( A. y ( A F y  ->  ( A  e.  _V  /\  A F y ) )  -> 
( E* y ( A  e.  _V  /\  A F y )  ->  E* y  A F
y ) )
187, 16, 17sylc 65 1  |-  ( Fun 
F  ->  E* y  A F y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   _Vcvv 3200   class class class wbr 4653   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  funeu  5913  funco  5928  fununmo  5933  imadif  5973  fneu  5995  dff3  6372  shftfn  13813
  Copyright terms: Public domain W3C validator