| Step | Hyp | Ref
| Expression |
| 1 | | anandir 872 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 2 | 1 | exbii 1774 |
. . . . . . 7
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 3 | | 19.40 1797 |
. . . . . . 7
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 4 | 2, 3 | sylbi 207 |
. . . . . 6
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 5 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥Fun ◡𝐹 |
| 6 | | nfe1 2027 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) |
| 7 | 5, 6 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(Fun ◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 8 | | funmo 5904 |
. . . . . . . . . . . . . 14
⊢ (Fun
◡𝐹 → ∃*𝑥 𝑦◡𝐹𝑥) |
| 9 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 10 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
| 11 | 9, 10 | brcnv 5305 |
. . . . . . . . . . . . . . 15
⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
| 12 | 11 | mobii 2493 |
. . . . . . . . . . . . . 14
⊢
(∃*𝑥 𝑦◡𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦) |
| 13 | 8, 12 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (Fun
◡𝐹 → ∃*𝑥 𝑥𝐹𝑦) |
| 14 | | mopick 2535 |
. . . . . . . . . . . . 13
⊢
((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥 ∈ 𝐵)) |
| 15 | 13, 14 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥 ∈ 𝐵)) |
| 16 | 15 | con2d 129 |
. . . . . . . . . . 11
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 → ¬ 𝑥𝐹𝑦)) |
| 17 | | imnan 438 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 18 | 16, 17 | sylib 208 |
. . . . . . . . . 10
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 19 | 7, 18 | alrimi 2082 |
. . . . . . . . 9
⊢ ((Fun
◡𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵)) → ∀𝑥 ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 20 | 19 | ex 450 |
. . . . . . . 8
⊢ (Fun
◡𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) → ∀𝑥 ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 21 | | exancom 1787 |
. . . . . . . 8
⊢
(∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 22 | | alnex 1706 |
. . . . . . . 8
⊢
(∀𝑥 ¬
(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 23 | 20, 21, 22 | 3imtr3g 284 |
. . . . . . 7
⊢ (Fun
◡𝐹 → (∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 24 | 23 | anim2d 589 |
. . . . . 6
⊢ (Fun
◡𝐹 → ((∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∃𝑥(¬ 𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)))) |
| 25 | 4, 24 | syl5 34 |
. . . . 5
⊢ (Fun
◡𝐹 → (∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)))) |
| 26 | | 19.29r 1802 |
. . . . . . 7
⊢
((∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 27 | 22, 26 | sylan2br 493 |
. . . . . 6
⊢
((∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 28 | | andi 911 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥𝐹𝑦)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥 ∈ 𝐵) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦))) |
| 29 | | ianor 509 |
. . . . . . . . 9
⊢ (¬
(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦) ↔ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥𝐹𝑦)) |
| 30 | 29 | anbi2i 730 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥𝐹𝑦))) |
| 31 | | an32 839 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥 ∈ 𝐵)) |
| 32 | | pm3.24 926 |
. . . . . . . . . . . 12
⊢ ¬
(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦) |
| 33 | 32 | intnan 960 |
. . . . . . . . . . 11
⊢ ¬
(𝑥 ∈ 𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)) |
| 34 | | anass 681 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦))) |
| 35 | 33, 34 | mtbir 313 |
. . . . . . . . . 10
⊢ ¬
((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦) |
| 36 | 35 | biorfi 422 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥 ∈ 𝐵) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦))) |
| 37 | 31, 36 | bitri 264 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥 ∈ 𝐵) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦))) |
| 38 | 28, 30, 37 | 3bitr4i 292 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 39 | 38 | exbii 1774 |
. . . . . 6
⊢
(∃𝑥((𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 40 | 27, 39 | sylib 208 |
. . . . 5
⊢
((∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) → ∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 41 | 25, 40 | impbid1 215 |
. . . 4
⊢ (Fun
◡𝐹 → (∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)))) |
| 42 | | eldif 3584 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 43 | 42 | anbi1i 731 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 44 | 43 | exbii 1774 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 45 | 9 | elima2 5472 |
. . . . 5
⊢ (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
| 46 | 9 | elima2 5472 |
. . . . . 6
⊢ (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 47 | 46 | notbii 310 |
. . . . 5
⊢ (¬
𝑦 ∈ (𝐹 “ 𝐵) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) |
| 48 | 45, 47 | anbi12i 733 |
. . . 4
⊢ ((𝑦 ∈ (𝐹 “ 𝐴) ∧ ¬ 𝑦 ∈ (𝐹 “ 𝐵)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 49 | 41, 44, 48 | 3bitr4g 303 |
. . 3
⊢ (Fun
◡𝐹 → (∃𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦) ↔ (𝑦 ∈ (𝐹 “ 𝐴) ∧ ¬ 𝑦 ∈ (𝐹 “ 𝐵)))) |
| 50 | 9 | elima2 5472 |
. . 3
⊢ (𝑦 ∈ (𝐹 “ (𝐴 ∖ 𝐵)) ↔ ∃𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥𝐹𝑦)) |
| 51 | | eldif 3584 |
. . 3
⊢ (𝑦 ∈ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ↔ (𝑦 ∈ (𝐹 “ 𝐴) ∧ ¬ 𝑦 ∈ (𝐹 “ 𝐵))) |
| 52 | 49, 50, 51 | 3bitr4g 303 |
. 2
⊢ (Fun
◡𝐹 → (𝑦 ∈ (𝐹 “ (𝐴 ∖ 𝐵)) ↔ 𝑦 ∈ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 53 | 52 | eqrdv 2620 |
1
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) |