| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spc2ev | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2ev.1 | ⊢ 𝐴 ∈ V |
| spc2ev.2 | ⊢ 𝐵 ∈ V |
| spc2ev.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spc2ev | ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ev.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spc2ev.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | spc2ev.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | spc2egv 3295 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| 5 | 1, 2, 4 | mp2an 708 | 1 ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: relop 5272 endisj 8047 dcomex 9269 axcnre 9985 hashle2pr 13259 wlk2f 26525 uhgr3cyclex 27042 qqhval2 30026 itg2addnclem3 33463 funop1 41302 |
| Copyright terms: Public domain | W3C validator |