| Step | Hyp | Ref
| Expression |
| 1 | | ssel 3597 |
. . . . . . 7
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 2 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 3 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 4 | 2, 3 | opeldm 5328 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐺 → 𝑥 ∈ dom 𝐺) |
| 5 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → 𝑥 ∈ dom 𝐺)) |
| 6 | 1, 5 | jcad 555 |
. . . . . 6
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ dom 𝐺))) |
| 7 | 6 | adantl 482 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ dom 𝐺))) |
| 8 | | funeu2 5914 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → ∃!𝑦〈𝑥, 𝑦〉 ∈ 𝐹) |
| 9 | 2 | eldm2 5322 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ dom 𝐺 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐺) |
| 10 | 1 | ancrd 577 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 11 | 10 | eximdv 1846 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ⊆ 𝐹 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐺 → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 12 | 9, 11 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢ (𝐺 ⊆ 𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 13 | 12 | imp 445 |
. . . . . . . . . . . 12
⊢ ((𝐺 ⊆ 𝐹 ∧ 𝑥 ∈ dom 𝐺) → ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 14 | | eupick 2536 |
. . . . . . . . . . . 12
⊢
((∃!𝑦〈𝑥, 𝑦〉 ∈ 𝐹 ∧ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐺)) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 15 | 8, 13, 14 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((Fun
𝐹 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) ∧ (𝐺 ⊆ 𝐹 ∧ 𝑥 ∈ dom 𝐺)) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 16 | 15 | exp43 640 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝐺 ⊆ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺))))) |
| 17 | 16 | com23 86 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝐺 ⊆ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺))))) |
| 18 | 17 | imp 445 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ 𝐺)))) |
| 19 | 18 | com34 91 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐺)))) |
| 20 | 19 | pm2.43d 53 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 21 | 20 | impd 447 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ dom 𝐺) → 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 22 | 7, 21 | impbid 202 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ 𝐺 ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ dom 𝐺))) |
| 23 | 3 | opelres 5401 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ dom 𝐺)) |
| 24 | 22, 23 | syl6rbbr 279 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 25 | 24 | alrimivv 1856 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 26 | | relres 5426 |
. . 3
⊢ Rel
(𝐹 ↾ dom 𝐺) |
| 27 | | funrel 5905 |
. . . 4
⊢ (Fun
𝐹 → Rel 𝐹) |
| 28 | | relss 5206 |
. . . 4
⊢ (𝐺 ⊆ 𝐹 → (Rel 𝐹 → Rel 𝐺)) |
| 29 | 27, 28 | mpan9 486 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → Rel 𝐺) |
| 30 | | eqrel 5209 |
. . 3
⊢ ((Rel
(𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 31 | 26, 29, 30 | sylancr 695 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ dom 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ 𝐺))) |
| 32 | 25, 31 | mpbird 247 |
1
⊢ ((Fun
𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) |