Proof of Theorem isngp2
| Step | Hyp | Ref
| Expression |
| 1 | | isngp.n |
. . 3
⊢ 𝑁 = (norm‘𝐺) |
| 2 | | isngp.z |
. . 3
⊢ − =
(-g‘𝐺) |
| 3 | | isngp.d |
. . 3
⊢ 𝐷 = (dist‘𝐺) |
| 4 | 1, 2, 3 | isngp 22400 |
. 2
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 5 | | isngp2.e |
. . . . . . 7
⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| 6 | | resss 5422 |
. . . . . . 7
⊢ (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷 |
| 7 | 5, 6 | eqsstri 3635 |
. . . . . 6
⊢ 𝐸 ⊆ 𝐷 |
| 8 | | sseq1 3626 |
. . . . . 6
⊢ ((𝑁 ∘ − ) = 𝐸 → ((𝑁 ∘ − ) ⊆ 𝐷 ↔ 𝐸 ⊆ 𝐷)) |
| 9 | 7, 8 | mpbiri 248 |
. . . . 5
⊢ ((𝑁 ∘ − ) = 𝐸 → (𝑁 ∘ − ) ⊆ 𝐷) |
| 10 | | isngp2.x |
. . . . . . . . . . . . 13
⊢ 𝑋 = (Base‘𝐺) |
| 11 | 3 | reseq1i 5392 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| 12 | 5, 11 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| 13 | 10, 12 | msmet 22262 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋)) |
| 14 | 1, 10, 3, 5 | nmf2 22397 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ) |
| 15 | 13, 14 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ) |
| 16 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → 𝑁:𝑋⟶ℝ) |
| 17 | 10, 2 | grpsubf 17494 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
| 18 | 17 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → − :(𝑋 × 𝑋)⟶𝑋) |
| 19 | | fco 6058 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ − :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
| 20 | 16, 18, 19 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ) |
| 21 | | fdm 6051 |
. . . . . . . . 9
⊢ ((𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ → dom (𝑁 ∘ − ) = (𝑋 × 𝑋)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → dom (𝑁 ∘ − ) = (𝑋 × 𝑋)) |
| 23 | 22 | reseq2d 5396 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝐸 ↾ (𝑋 × 𝑋))) |
| 24 | 10, 12 | msf 22263 |
. . . . . . . . . 10
⊢ (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
| 25 | 24 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ) |
| 26 | | ffun 6048 |
. . . . . . . . 9
⊢ (𝐸:(𝑋 × 𝑋)⟶ℝ → Fun 𝐸) |
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → Fun 𝐸) |
| 28 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐷) |
| 29 | | ssv 3625 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ V |
| 30 | | fss 6056 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∘ − ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V)
→ (𝑁 ∘ −
):(𝑋 × 𝑋)⟶V) |
| 31 | 20, 29, 30 | sylancl 694 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ):(𝑋 × 𝑋)⟶V) |
| 32 | | fssxp 6060 |
. . . . . . . . . . 11
⊢ ((𝑁 ∘ − ):(𝑋 × 𝑋)⟶V → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ ((𝑋 × 𝑋) × V)) |
| 34 | 28, 33 | ssind 3837 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V))) |
| 35 | | df-res 5126 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
| 36 | 5, 35 | eqtri 2644 |
. . . . . . . . 9
⊢ 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V)) |
| 37 | 34, 36 | syl6sseqr 3652 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) ⊆ 𝐸) |
| 38 | | funssres 5930 |
. . . . . . . 8
⊢ ((Fun
𝐸 ∧ (𝑁 ∘ − ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
| 39 | 27, 37, 38 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 ∘ − )) = (𝑁 ∘ − )) |
| 40 | | ffn 6045 |
. . . . . . . 8
⊢ (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋)) |
| 41 | | fnresdm 6000 |
. . . . . . . 8
⊢ (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
| 42 | 25, 40, 41 | 3syl 18 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸) |
| 43 | 23, 39, 42 | 3eqtr3d 2664 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷) → (𝑁 ∘ − ) = 𝐸) |
| 44 | 43 | ex 450 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) ⊆ 𝐷 → (𝑁 ∘ − ) = 𝐸)) |
| 45 | 9, 44 | impbid2 216 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ∘ − ) = 𝐸 ↔ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 46 | 45 | pm5.32i 669 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 47 | | df-3an 1039 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) = 𝐸)) |
| 48 | | df-3an 1039 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 49 | 46, 47, 48 | 3bitr4i 292 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) ⊆ 𝐷)) |
| 50 | 4, 49 | bitr4i 267 |
1
⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = 𝐸)) |