Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. 2
⊢
(Base‘𝑀) =
(Base‘𝑀) |
2 | | eqid 2622 |
. 2
⊢
(Base‘𝑁) =
(Base‘𝑁) |
3 | | eqid 2622 |
. 2
⊢
(+g‘𝑀) = (+g‘𝑀) |
4 | | ghmplusg.p |
. 2
⊢ + =
(+g‘𝑁) |
5 | | ghmgrp1 17662 |
. . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp) |
6 | 5 | 3ad2ant3 1084 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp) |
7 | | ghmgrp2 17663 |
. . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp) |
8 | 7 | 3ad2ant3 1084 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp) |
9 | 2, 4 | grpcl 17430 |
. . . . 5
⊢ ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
10 | 9 | 3expb 1266 |
. . . 4
⊢ ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
11 | 8, 10 | sylan 488 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
12 | 1, 2 | ghmf 17664 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
13 | 12 | 3ad2ant2 1083 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
14 | 1, 2 | ghmf 17664 |
. . . 4
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
15 | 14 | 3ad2ant3 1084 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
16 | | fvexd 6203 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V) |
17 | | inidm 3822 |
. . 3
⊢
((Base‘𝑀)
∩ (Base‘𝑀)) =
(Base‘𝑀) |
18 | 11, 13, 15, 16, 16, 17 | off 6912 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘𝑓 + 𝐺):(Base‘𝑀)⟶(Base‘𝑁)) |
19 | 1, 3, 4 | ghmlin 17665 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
20 | 19 | 3expb 1266 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
21 | 20 | 3ad2antl2 1224 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
22 | 1, 3, 4 | ghmlin 17665 |
. . . . . . 7
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
23 | 22 | 3expb 1266 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
24 | 23 | 3ad2antl3 1225 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
25 | 21, 24 | oveq12d 6668 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦)))) |
26 | | simpl1 1064 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel) |
27 | | ablcmn 18199 |
. . . . . 6
⊢ (𝑁 ∈ Abel → 𝑁 ∈ CMnd) |
28 | 26, 27 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd) |
29 | 13 | ffvelrnda 6359 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘𝑥) ∈ (Base‘𝑁)) |
30 | 29 | adantrr 753 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑥) ∈ (Base‘𝑁)) |
31 | 13 | ffvelrnda 6359 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
32 | 31 | adantrl 752 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
33 | 15 | ffvelrnda 6359 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺‘𝑥) ∈ (Base‘𝑁)) |
34 | 33 | adantrr 753 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑥) ∈ (Base‘𝑁)) |
35 | 15 | ffvelrnda 6359 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
36 | 35 | adantrl 752 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
37 | 2, 4 | cmn4 18212 |
. . . . 5
⊢ ((𝑁 ∈ CMnd ∧ ((𝐹‘𝑥) ∈ (Base‘𝑁) ∧ (𝐹‘𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺‘𝑥) ∈ (Base‘𝑁) ∧ (𝐺‘𝑦) ∈ (Base‘𝑁))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
38 | 28, 30, 32, 34, 36, 37 | syl122anc 1335 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
39 | 25, 38 | eqtrd 2656 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
40 | | ffn 6045 |
. . . . . 6
⊢ (𝐹:(Base‘𝑀)⟶(Base‘𝑁) → 𝐹 Fn (Base‘𝑀)) |
41 | 13, 40 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀)) |
42 | 41 | adantr 481 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀)) |
43 | | ffn 6045 |
. . . . . 6
⊢ (𝐺:(Base‘𝑀)⟶(Base‘𝑁) → 𝐺 Fn (Base‘𝑀)) |
44 | 15, 43 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀)) |
45 | 44 | adantr 481 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀)) |
46 | | fvexd 6203 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V) |
47 | 1, 3 | grpcl 17430 |
. . . . . 6
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
48 | 47 | 3expb 1266 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
49 | 6, 48 | sylan 488 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
50 | | fnfvof 6911 |
. . . 4
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) |
51 | 42, 45, 46, 49, 50 | syl22anc 1327 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) |
52 | | simprl 794 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀)) |
53 | | fnfvof 6911 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
54 | 42, 45, 46, 52, 53 | syl22anc 1327 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
55 | | simprr 796 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) |
56 | | fnfvof 6911 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
57 | 42, 45, 46, 55, 56 | syl22anc 1327 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
58 | 54, 57 | oveq12d 6668 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹 ∘𝑓 + 𝐺)‘𝑥) + ((𝐹 ∘𝑓 + 𝐺)‘𝑦)) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
59 | 39, 51, 58 | 3eqtr4d 2666 |
. 2
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘𝑓 + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = (((𝐹 ∘𝑓 + 𝐺)‘𝑥) + ((𝐹 ∘𝑓 + 𝐺)‘𝑦))) |
60 | 1, 2, 3, 4, 6, 8, 18, 59 | isghmd 17669 |
1
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘𝑓 + 𝐺) ∈ (𝑀 GrpHom 𝑁)) |