MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmplusg Structured version   Visualization version   GIF version

Theorem ghmplusg 18249
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
ghmplusg.p + = (+g𝑁)
Assertion
Ref Expression
ghmplusg ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝑓 + 𝐺) ∈ (𝑀 GrpHom 𝑁))

Proof of Theorem ghmplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2622 . 2 (Base‘𝑁) = (Base‘𝑁)
3 eqid 2622 . 2 (+g𝑀) = (+g𝑀)
4 ghmplusg.p . 2 + = (+g𝑁)
5 ghmgrp1 17662 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp)
653ad2ant3 1084 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp)
7 ghmgrp2 17663 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
873ad2ant3 1084 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp)
92, 4grpcl 17430 . . . . 5 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
1093expb 1266 . . . 4 ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
118, 10sylan 488 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
121, 2ghmf 17664 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
13123ad2ant2 1083 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
141, 2ghmf 17664 . . . 4 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
15143ad2ant3 1084 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
16 fvexd 6203 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V)
17 inidm 3822 . . 3 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
1811, 13, 15, 16, 16, 17off 6912 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝑓 + 𝐺):(Base‘𝑀)⟶(Base‘𝑁))
191, 3, 4ghmlin 17665 . . . . . . 7 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
20193expb 1266 . . . . . 6 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
21203ad2antl2 1224 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
221, 3, 4ghmlin 17665 . . . . . . 7 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
23223expb 1266 . . . . . 6 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
24233ad2antl3 1225 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
2521, 24oveq12d 6668 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))))
26 simpl1 1064 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel)
27 ablcmn 18199 . . . . . 6 (𝑁 ∈ Abel → 𝑁 ∈ CMnd)
2826, 27syl 17 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd)
2913ffvelrnda 6359 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹𝑥) ∈ (Base‘𝑁))
3029adantrr 753 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑥) ∈ (Base‘𝑁))
3113ffvelrnda 6359 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹𝑦) ∈ (Base‘𝑁))
3231adantrl 752 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑦) ∈ (Base‘𝑁))
3315ffvelrnda 6359 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺𝑥) ∈ (Base‘𝑁))
3433adantrr 753 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑥) ∈ (Base‘𝑁))
3515ffvelrnda 6359 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3635adantrl 752 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
372, 4cmn4 18212 . . . . 5 ((𝑁 ∈ CMnd ∧ ((𝐹𝑥) ∈ (Base‘𝑁) ∧ (𝐹𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺𝑥) ∈ (Base‘𝑁) ∧ (𝐺𝑦) ∈ (Base‘𝑁))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3828, 30, 32, 34, 36, 37syl122anc 1335 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3925, 38eqtrd 2656 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
40 ffn 6045 . . . . . 6 (𝐹:(Base‘𝑀)⟶(Base‘𝑁) → 𝐹 Fn (Base‘𝑀))
4113, 40syl 17 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀))
4241adantr 481 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀))
43 ffn 6045 . . . . . 6 (𝐺:(Base‘𝑀)⟶(Base‘𝑁) → 𝐺 Fn (Base‘𝑀))
4415, 43syl 17 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
4544adantr 481 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
46 fvexd 6203 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V)
471, 3grpcl 17430 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
48473expb 1266 . . . . 5 ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
496, 48sylan 488 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
50 fnfvof 6911 . . . 4 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
5142, 45, 46, 49, 50syl22anc 1327 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
52 simprl 794 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
53 fnfvof 6911 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5442, 45, 46, 52, 53syl22anc 1327 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
55 simprr 796 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
56 fnfvof 6911 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5742, 45, 46, 55, 56syl22anc 1327 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5854, 57oveq12d 6668 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹𝑓 + 𝐺)‘𝑥) + ((𝐹𝑓 + 𝐺)‘𝑦)) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
5939, 51, 583eqtr4d 2666 . 2 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝑓 + 𝐺)‘(𝑥(+g𝑀)𝑦)) = (((𝐹𝑓 + 𝐺)‘𝑥) + ((𝐹𝑓 + 𝐺)‘𝑦)))
601, 2, 3, 4, 6, 8, 18, 59isghmd 17669 1 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝑓 + 𝐺) ∈ (𝑀 GrpHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422   GrpHom cghm 17657  CMndccmn 18193  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-cmn 18195  df-abl 18196
This theorem is referenced by:  lmhmplusg  19044  nmotri  22543  nghmplusg  22544
  Copyright terms: Public domain W3C validator