| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmplusg | Structured version Visualization version Unicode version | ||
| Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| ghmplusg.p |
|
| Ref | Expression |
|---|---|
| ghmplusg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | eqid 2622 |
. 2
| |
| 3 | eqid 2622 |
. 2
| |
| 4 | ghmplusg.p |
. 2
| |
| 5 | ghmgrp1 17662 |
. . 3
| |
| 6 | 5 | 3ad2ant3 1084 |
. 2
|
| 7 | ghmgrp2 17663 |
. . 3
| |
| 8 | 7 | 3ad2ant3 1084 |
. 2
|
| 9 | 2, 4 | grpcl 17430 |
. . . . 5
|
| 10 | 9 | 3expb 1266 |
. . . 4
|
| 11 | 8, 10 | sylan 488 |
. . 3
|
| 12 | 1, 2 | ghmf 17664 |
. . . 4
|
| 13 | 12 | 3ad2ant2 1083 |
. . 3
|
| 14 | 1, 2 | ghmf 17664 |
. . . 4
|
| 15 | 14 | 3ad2ant3 1084 |
. . 3
|
| 16 | fvexd 6203 |
. . 3
| |
| 17 | inidm 3822 |
. . 3
| |
| 18 | 11, 13, 15, 16, 16, 17 | off 6912 |
. 2
|
| 19 | 1, 3, 4 | ghmlin 17665 |
. . . . . . 7
|
| 20 | 19 | 3expb 1266 |
. . . . . 6
|
| 21 | 20 | 3ad2antl2 1224 |
. . . . 5
|
| 22 | 1, 3, 4 | ghmlin 17665 |
. . . . . . 7
|
| 23 | 22 | 3expb 1266 |
. . . . . 6
|
| 24 | 23 | 3ad2antl3 1225 |
. . . . 5
|
| 25 | 21, 24 | oveq12d 6668 |
. . . 4
|
| 26 | simpl1 1064 |
. . . . . 6
| |
| 27 | ablcmn 18199 |
. . . . . 6
| |
| 28 | 26, 27 | syl 17 |
. . . . 5
|
| 29 | 13 | ffvelrnda 6359 |
. . . . . 6
|
| 30 | 29 | adantrr 753 |
. . . . 5
|
| 31 | 13 | ffvelrnda 6359 |
. . . . . 6
|
| 32 | 31 | adantrl 752 |
. . . . 5
|
| 33 | 15 | ffvelrnda 6359 |
. . . . . 6
|
| 34 | 33 | adantrr 753 |
. . . . 5
|
| 35 | 15 | ffvelrnda 6359 |
. . . . . 6
|
| 36 | 35 | adantrl 752 |
. . . . 5
|
| 37 | 2, 4 | cmn4 18212 |
. . . . 5
|
| 38 | 28, 30, 32, 34, 36, 37 | syl122anc 1335 |
. . . 4
|
| 39 | 25, 38 | eqtrd 2656 |
. . 3
|
| 40 | ffn 6045 |
. . . . . 6
| |
| 41 | 13, 40 | syl 17 |
. . . . 5
|
| 42 | 41 | adantr 481 |
. . . 4
|
| 43 | ffn 6045 |
. . . . . 6
| |
| 44 | 15, 43 | syl 17 |
. . . . 5
|
| 45 | 44 | adantr 481 |
. . . 4
|
| 46 | fvexd 6203 |
. . . 4
| |
| 47 | 1, 3 | grpcl 17430 |
. . . . . 6
|
| 48 | 47 | 3expb 1266 |
. . . . 5
|
| 49 | 6, 48 | sylan 488 |
. . . 4
|
| 50 | fnfvof 6911 |
. . . 4
| |
| 51 | 42, 45, 46, 49, 50 | syl22anc 1327 |
. . 3
|
| 52 | simprl 794 |
. . . . 5
| |
| 53 | fnfvof 6911 |
. . . . 5
| |
| 54 | 42, 45, 46, 52, 53 | syl22anc 1327 |
. . . 4
|
| 55 | simprr 796 |
. . . . 5
| |
| 56 | fnfvof 6911 |
. . . . 5
| |
| 57 | 42, 45, 46, 55, 56 | syl22anc 1327 |
. . . 4
|
| 58 | 54, 57 | oveq12d 6668 |
. . 3
|
| 59 | 39, 51, 58 | 3eqtr4d 2666 |
. 2
|
| 60 | 1, 2, 3, 4, 6, 8, 18, 59 | isghmd 17669 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ghm 17658 df-cmn 18195 df-abl 18196 |
| This theorem is referenced by: lmhmplusg 19044 nmotri 22543 nghmplusg 22544 |
| Copyright terms: Public domain | W3C validator |