Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconxN Structured version   Visualization version   GIF version

Theorem glbconxN 34664
Description: De Morgan's law for GLB and LUB. Index-set version of glbconN 34663, where we read 𝑆 as 𝑆(𝑖). (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconxN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆   𝐵,𝑖   𝑥,𝐼   𝑖,𝐾   ,𝑖,𝑥
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑥,𝑖)   𝐺(𝑥,𝑖)   𝐼(𝑖)   𝐾(𝑥)

Proof of Theorem glbconxN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6 𝑦 ∈ V
2 eqeq1 2626 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑆𝑦 = 𝑆))
32rexbidv 3052 . . . . . 6 (𝑥 = 𝑦 → (∃𝑖𝐼 𝑥 = 𝑆 ↔ ∃𝑖𝐼 𝑦 = 𝑆))
41, 3elab 3350 . . . . 5 (𝑦 ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ↔ ∃𝑖𝐼 𝑦 = 𝑆)
5 nfra1 2941 . . . . . 6 𝑖𝑖𝐼 𝑆𝐵
6 nfv 1843 . . . . . 6 𝑖 𝑦𝐵
7 rsp 2929 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (𝑖𝐼𝑆𝐵))
8 eleq1a 2696 . . . . . . 7 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
97, 8syl6 35 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → (𝑖𝐼 → (𝑦 = 𝑆𝑦𝐵)))
105, 6, 9rexlimd 3026 . . . . 5 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
114, 10syl5bi 232 . . . 4 (∀𝑖𝐼 𝑆𝐵 → (𝑦 ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} → 𝑦𝐵))
1211ssrdv 3609 . . 3 (∀𝑖𝐼 𝑆𝐵 → {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ⊆ 𝐵)
13 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
14 glbcon.u . . . 4 𝑈 = (lub‘𝐾)
15 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
16 glbcon.o . . . 4 = (oc‘𝐾)
1713, 14, 15, 16glbconN 34663 . . 3 ((𝐾 ∈ HL ∧ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})))
1812, 17sylan2 491 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})))
19 fvex 6201 . . . . . . . . 9 ( 𝑦) ∈ V
20 eqeq1 2626 . . . . . . . . . 10 (𝑥 = ( 𝑦) → (𝑥 = 𝑆 ↔ ( 𝑦) = 𝑆))
2120rexbidv 3052 . . . . . . . . 9 (𝑥 = ( 𝑦) → (∃𝑖𝐼 𝑥 = 𝑆 ↔ ∃𝑖𝐼 ( 𝑦) = 𝑆))
2219, 21elab 3350 . . . . . . . 8 (( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ↔ ∃𝑖𝐼 ( 𝑦) = 𝑆)
2322a1i 11 . . . . . . 7 (𝑦𝐵 → (( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ↔ ∃𝑖𝐼 ( 𝑦) = 𝑆))
2423rabbiia 3185 . . . . . 6 {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑦𝐵 ∣ ∃𝑖𝐼 ( 𝑦) = 𝑆}
25 df-rab 2921 . . . . . 6 {𝑦𝐵 ∣ ∃𝑖𝐼 ( 𝑦) = 𝑆} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)}
2624, 25eqtri 2644 . . . . 5 {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)}
27 nfv 1843 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
2827, 5nfan 1828 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
29 rspa 2930 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
30 hlop 34649 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OP)
3113, 16opoccl 34481 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑆𝐵) → ( 𝑆) ∈ 𝐵)
3230, 31sylan 488 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑆𝐵) → ( 𝑆) ∈ 𝐵)
33 eleq1a 2696 . . . . . . . . . . . . . 14 (( 𝑆) ∈ 𝐵 → (𝑦 = ( 𝑆) → 𝑦𝐵))
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) → 𝑦𝐵))
3534pm4.71rd 667 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵𝑦 = ( 𝑆))))
36 eqcom 2629 . . . . . . . . . . . . . 14 (𝑆 = ( 𝑦) ↔ ( 𝑦) = 𝑆)
3713, 16opcon2b 34484 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ 𝑆𝐵𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
3830, 37syl3an1 1359 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
39383expa 1265 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
4036, 39syl5rbbr 275 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑦𝐵) → (𝑦 = ( 𝑆) ↔ ( 𝑦) = 𝑆))
4140pm5.32da 673 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → ((𝑦𝐵𝑦 = ( 𝑆)) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4235, 41bitrd 268 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4329, 42sylan2 491 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (∀𝑖𝐼 𝑆𝐵𝑖𝐼)) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4443anassrs 680 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4528, 44rexbida 3047 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖𝐼 𝑦 = ( 𝑆) ↔ ∃𝑖𝐼 (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
46 r19.42v 3092 . . . . . . . 8 (∃𝑖𝐼 (𝑦𝐵 ∧ ( 𝑦) = 𝑆) ↔ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆))
4745, 46syl6rbb 277 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → ((𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆) ↔ ∃𝑖𝐼 𝑦 = ( 𝑆)))
4847abbidv 2741 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)} = {𝑦 ∣ ∃𝑖𝐼 𝑦 = ( 𝑆)})
49 eqeq1 2626 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 = ( 𝑆) ↔ 𝑥 = ( 𝑆)))
5049rexbidv 3052 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝐼 𝑦 = ( 𝑆) ↔ ∃𝑖𝐼 𝑥 = ( 𝑆)))
5150cbvabv 2747 . . . . . 6 {𝑦 ∣ ∃𝑖𝐼 𝑦 = ( 𝑆)} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)}
5248, 51syl6eq 2672 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})
5326, 52syl5eq 2668 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})
5453fveq2d 6195 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}}) = (𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)}))
5554fveq2d 6195 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
5618, 55eqtrd 2656 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  wss 3574  cfv 5888  Basecbs 15857  occoc 15949  lubclub 16942  glbcglb 16943  OPcops 34459  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-undef 7399  df-lub 16974  df-glb 16975  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-hlat 34638
This theorem is referenced by:  polval2N  35192
  Copyright terms: Public domain W3C validator