| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbconxN | Structured version Visualization version Unicode version | ||
| Description: De Morgan's law for GLB
and LUB. Index-set version of glbconN 34663, where
we read |
| Ref | Expression |
|---|---|
| glbcon.b |
|
| glbcon.u |
|
| glbcon.g |
|
| glbcon.o |
|
| Ref | Expression |
|---|---|
| glbconxN |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . 6
| |
| 2 | eqeq1 2626 |
. . . . . . 7
| |
| 3 | 2 | rexbidv 3052 |
. . . . . 6
|
| 4 | 1, 3 | elab 3350 |
. . . . 5
|
| 5 | nfra1 2941 |
. . . . . 6
| |
| 6 | nfv 1843 |
. . . . . 6
| |
| 7 | rsp 2929 |
. . . . . . 7
| |
| 8 | eleq1a 2696 |
. . . . . . 7
| |
| 9 | 7, 8 | syl6 35 |
. . . . . 6
|
| 10 | 5, 6, 9 | rexlimd 3026 |
. . . . 5
|
| 11 | 4, 10 | syl5bi 232 |
. . . 4
|
| 12 | 11 | ssrdv 3609 |
. . 3
|
| 13 | glbcon.b |
. . . 4
| |
| 14 | glbcon.u |
. . . 4
| |
| 15 | glbcon.g |
. . . 4
| |
| 16 | glbcon.o |
. . . 4
| |
| 17 | 13, 14, 15, 16 | glbconN 34663 |
. . 3
|
| 18 | 12, 17 | sylan2 491 |
. 2
|
| 19 | fvex 6201 |
. . . . . . . . 9
| |
| 20 | eqeq1 2626 |
. . . . . . . . . 10
| |
| 21 | 20 | rexbidv 3052 |
. . . . . . . . 9
|
| 22 | 19, 21 | elab 3350 |
. . . . . . . 8
|
| 23 | 22 | a1i 11 |
. . . . . . 7
|
| 24 | 23 | rabbiia 3185 |
. . . . . 6
|
| 25 | df-rab 2921 |
. . . . . 6
| |
| 26 | 24, 25 | eqtri 2644 |
. . . . 5
|
| 27 | nfv 1843 |
. . . . . . . . . 10
| |
| 28 | 27, 5 | nfan 1828 |
. . . . . . . . 9
|
| 29 | rspa 2930 |
. . . . . . . . . . 11
| |
| 30 | hlop 34649 |
. . . . . . . . . . . . . . 15
| |
| 31 | 13, 16 | opoccl 34481 |
. . . . . . . . . . . . . . 15
|
| 32 | 30, 31 | sylan 488 |
. . . . . . . . . . . . . 14
|
| 33 | eleq1a 2696 |
. . . . . . . . . . . . . 14
| |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . 13
|
| 35 | 34 | pm4.71rd 667 |
. . . . . . . . . . . 12
|
| 36 | eqcom 2629 |
. . . . . . . . . . . . . 14
| |
| 37 | 13, 16 | opcon2b 34484 |
. . . . . . . . . . . . . . . 16
|
| 38 | 30, 37 | syl3an1 1359 |
. . . . . . . . . . . . . . 15
|
| 39 | 38 | 3expa 1265 |
. . . . . . . . . . . . . 14
|
| 40 | 36, 39 | syl5rbbr 275 |
. . . . . . . . . . . . 13
|
| 41 | 40 | pm5.32da 673 |
. . . . . . . . . . . 12
|
| 42 | 35, 41 | bitrd 268 |
. . . . . . . . . . 11
|
| 43 | 29, 42 | sylan2 491 |
. . . . . . . . . 10
|
| 44 | 43 | anassrs 680 |
. . . . . . . . 9
|
| 45 | 28, 44 | rexbida 3047 |
. . . . . . . 8
|
| 46 | r19.42v 3092 |
. . . . . . . 8
| |
| 47 | 45, 46 | syl6rbb 277 |
. . . . . . 7
|
| 48 | 47 | abbidv 2741 |
. . . . . 6
|
| 49 | eqeq1 2626 |
. . . . . . . 8
| |
| 50 | 49 | rexbidv 3052 |
. . . . . . 7
|
| 51 | 50 | cbvabv 2747 |
. . . . . 6
|
| 52 | 48, 51 | syl6eq 2672 |
. . . . 5
|
| 53 | 26, 52 | syl5eq 2668 |
. . . 4
|
| 54 | 53 | fveq2d 6195 |
. . 3
|
| 55 | 54 | fveq2d 6195 |
. 2
|
| 56 | 18, 55 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-undef 7399 df-lub 16974 df-glb 16975 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-hlat 34638 |
| This theorem is referenced by: polval2N 35192 |
| Copyright terms: Public domain | W3C validator |