MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0prc Structured version   Visualization version   GIF version

Theorem griedg0prc 26156
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0prc 𝑈 ∉ V
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0prc
StepHypRef Expression
1 0ex 4790 . . . 4 ∅ ∈ V
2 feq1 6026 . . . 4 (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅))
3 f0 6086 . . . 4 ∅:∅⟶∅
41, 2, 3ceqsexv2d 3243 . . 3 𝑒 𝑒:∅⟶∅
5 opabn1stprc 7228 . . 3 (∃𝑒 𝑒:∅⟶∅ → {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
64, 5ax-mp 5 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
7 griedg0prc.u . . 3 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
8 neleq1 2902 . . 3 (𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V))
97, 8ax-mp 5 . 2 (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
106, 9mpbir 221 1 𝑈 ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wex 1704  wnel 2897  Vcvv 3200  c0 3915  {copab 4712  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  usgrprc  26158  rgrusgrprc  26485
  Copyright terms: Public domain W3C validator