MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0prc Structured version   Visualization version   Unicode version

Theorem griedg0prc 26156
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u  |-  U  =  { <. v ,  e
>.  |  e : (/) --> (/)
}
Assertion
Ref Expression
griedg0prc  |-  U  e/  _V
Distinct variable group:    v, e
Allowed substitution hints:    U( v, e)

Proof of Theorem griedg0prc
StepHypRef Expression
1 0ex 4790 . . . 4  |-  (/)  e.  _V
2 feq1 6026 . . . 4  |-  ( e  =  (/)  ->  ( e : (/) --> (/)  <->  (/) : (/) --> (/) ) )
3 f0 6086 . . . 4  |-  (/) : (/) --> (/)
41, 2, 3ceqsexv2d 3243 . . 3  |-  E. e 
e : (/) --> (/)
5 opabn1stprc 7228 . . 3  |-  ( E. e  e : (/) --> (/)  ->  { <. v ,  e
>.  |  e : (/) --> (/)
}  e/  _V )
64, 5ax-mp 5 . 2  |-  { <. v ,  e >.  |  e : (/) --> (/) }  e/  _V
7 griedg0prc.u . . 3  |-  U  =  { <. v ,  e
>.  |  e : (/) --> (/)
}
8 neleq1 2902 . . 3  |-  ( U  =  { <. v ,  e >.  |  e : (/) --> (/) }  ->  ( U  e/  _V  <->  { <. v ,  e >.  |  e : (/) --> (/) }  e/  _V ) )
97, 8ax-mp 5 . 2  |-  ( U  e/  _V  <->  { <. v ,  e >.  |  e : (/) --> (/) }  e/  _V )
106, 9mpbir 221 1  |-  U  e/  _V
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   E.wex 1704    e/ wnel 2897   _Vcvv 3200   (/)c0 3915   {copab 4712   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  usgrprc  26158  rgrusgrprc  26485
  Copyright terms: Public domain W3C validator