MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactcnv Structured version   Visualization version   GIF version

Theorem grplactcnv 17518
Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
grplact.3 + = (+g𝐺)
grplactcnv.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
grplactcnv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   𝐼,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactcnv
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
2 grplact.2 . . . . 5 𝑋 = (Base‘𝐺)
3 grplact.3 . . . . 5 + = (+g𝐺)
42, 3grpcl 17430 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
543expa 1265 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
6 simpl 473 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
7 grplactcnv.4 . . . . . 6 𝐼 = (invg𝐺)
82, 7grpinvcl 17467 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
96, 8jca 554 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋))
102, 3grpcl 17430 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
11103expa 1265 . . . 4 (((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
129, 11sylan 488 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
13 eqcom 2629 . . . . 5 (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = 𝑎)
14 eqid 2622 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
152, 3, 14, 7grplinv 17468 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1615adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1716oveq1d 6665 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((0g𝐺) + 𝑎))
18 simpll 790 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐺 ∈ Grp)
198adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐼𝐴) ∈ 𝑋)
20 simplr 792 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐴𝑋)
21 simprl 794 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
222, 3grpass 17431 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((𝐼𝐴) ∈ 𝑋𝐴𝑋𝑎𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
2318, 19, 20, 21, 22syl13anc 1328 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
242, 3, 14grplid 17452 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((0g𝐺) + 𝑎) = 𝑎)
2524ad2ant2r 783 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((0g𝐺) + 𝑎) = 𝑎)
2617, 23, 253eqtr3rd 2665 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 = ((𝐼𝐴) + (𝐴 + 𝑎)))
2726eqeq2d 2632 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = 𝑎 ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
2813, 27syl5bb 272 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
29 simprr 796 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
305adantrr 753 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐴 + 𝑎) ∈ 𝑋)
312, 3grplcan 17477 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝐴 + 𝑎) ∈ 𝑋 ∧ (𝐼𝐴) ∈ 𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3218, 29, 30, 19, 31syl13anc 1328 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3328, 32bitrd 268 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ 𝑏 = (𝐴 + 𝑎)))
341, 5, 12, 33f1ocnv2d 6886 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
35 grplact.1 . . . . . 6 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
3635, 2grplactfval 17516 . . . . 5 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3736adantl 482 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
38 f1oeq1 6127 . . . 4 ((𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)) → ((𝐹𝐴):𝑋1-1-onto𝑋 ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋))
3937, 38syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋 ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋))
4037cnveqd 5298 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
4135, 2grplactfval 17516 . . . . . 6 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)))
42 oveq2 6658 . . . . . . 7 (𝑎 = 𝑏 → ((𝐼𝐴) + 𝑎) = ((𝐼𝐴) + 𝑏))
4342cbvmptv 4750 . . . . . 6 (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))
4441, 43syl6eq 2672 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
458, 44syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
4640, 45eqeq12d 2637 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴) = (𝐹‘(𝐼𝐴)) ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
4739, 46anbi12d 747 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))) ↔ ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))))
4834, 47mpbird 247 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cmpt 4729  ccnv 5113  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  grplactf1o  17519  eqglact  17645  tgplacthmeo  21907  tgpconncompeqg  21915
  Copyright terms: Public domain W3C validator