MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgplacthmeo Structured version   Visualization version   GIF version

Theorem tgplacthmeo 21907
Description: The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgplacthmeo ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tgplacthmeo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tgptmd 21883 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgplacthmeo.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
3 tgplacthmeo.2 . . . 4 𝑋 = (Base‘𝐺)
4 tgplacthmeo.3 . . . 4 + = (+g𝐺)
5 tgplacthmeo.4 . . . 4 𝐽 = (TopOpen‘𝐺)
62, 3, 4, 5tmdlactcn 21906 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
71, 6sylan 488 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
8 tgpgrp 21882 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
9 eqid 2622 . . . . . . 7 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
10 eqid 2622 . . . . . . 7 (invg𝐺) = (invg𝐺)
119, 3, 4, 10grplactcnv 17518 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
128, 11sylan 488 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1312simprd 479 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
149, 3grplactfval 17516 . . . . . . 7 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1514adantl 482 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1615, 2syl6eqr 2674 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
1716cnveqd 5298 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
183, 10grpinvcl 17467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
198, 18sylan 488 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
209, 3grplactfval 17516 . . . . 5 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2213, 17, 213eqtr3d 2664 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
23 eqid 2622 . . . . . 6 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2423, 3, 4, 5tmdlactcn 21906 . . . . 5 ((𝐺 ∈ TopMnd ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
251, 24sylan 488 . . . 4 ((𝐺 ∈ TopGrp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2619, 25syldan 487 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2722, 26eqeltrd 2701 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
28 ishmeo 21562 . 2 (𝐹 ∈ (𝐽Homeo𝐽) ↔ (𝐹 ∈ (𝐽 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐽)))
297, 27, 28sylanbrc 698 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  ccnv 5113  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  TopOpenctopn 16082  Grpcgrp 17422  invgcminusg 17423   Cn ccn 21028  Homeochmeo 21556  TopMndctmd 21874  TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  subgntr  21910  opnsubg  21911  cldsubg  21914  tgpconncompeqg  21915  tgpconncomp  21916  snclseqg  21919  qustgpopn  21923  tsmsxplem1  21956
  Copyright terms: Public domain W3C validator