![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpo2inv | Structured version Visualization version GIF version |
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 |
grpasscan1.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpo2inv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpasscan1.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpasscan1.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
3 | 1, 2 | grpoinvcl 27378 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
4 | eqid 2622 | . . . . 5 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 4, 2 | grporinv 27381 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
6 | 3, 5 | syldan 487 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = (GId‘𝐺)) |
7 | 1, 4, 2 | grpolinv 27380 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
8 | 6, 7 | eqtr4d 2659 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴)) |
9 | 1, 2 | grpoinvcl 27378 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
10 | 3, 9 | syldan 487 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) ∈ 𝑋) |
11 | simpr 477 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
12 | 10, 11, 3 | 3jca 1242 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) |
13 | 1 | grpolcan 27384 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑁‘(𝑁‘𝐴)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
14 | 12, 13 | syldan 487 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺(𝑁‘(𝑁‘𝐴))) = ((𝑁‘𝐴)𝐺𝐴) ↔ (𝑁‘(𝑁‘𝐴)) = 𝐴)) |
15 | 8, 14 | mpbid 222 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ran crn 5115 ‘cfv 5888 (class class class)co 6650 GrpOpcgr 27343 GIdcgi 27344 invcgn 27345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-grpo 27347 df-gid 27348 df-ginv 27349 |
This theorem is referenced by: grpoinvf 27386 grpodivinv 27390 grpoinvdiv 27391 nvnegneg 27504 |
Copyright terms: Public domain | W3C validator |