MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnegneg Structured version   Visualization version   GIF version

Theorem nvnegneg 27504
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnegneg.1 𝑋 = (BaseSet‘𝑈)
nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvnegneg ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)

Proof of Theorem nvnegneg
StepHypRef Expression
1 neg1cn 11124 . . . 4 -1 ∈ ℂ
2 nvnegneg.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 nvnegneg.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvscl 27481 . . . 4 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
51, 4mp3an2 1412 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
6 eqid 2622 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2622 . . . 4 (inv‘( +𝑣𝑈)) = (inv‘( +𝑣𝑈))
82, 6, 3, 7nvinv 27494 . . 3 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
95, 8syldan 487 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
102, 6, 3, 7nvinv 27494 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣𝑈))‘𝐴))
1110fveq2d 6195 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)))
126nvgrp 27472 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
132, 6bafval 27459 . . . 4 𝑋 = ran ( +𝑣𝑈)
1413, 7grpo2inv 27385 . . 3 ((( +𝑣𝑈) ∈ GrpOp ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
1512, 14sylan 488 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
169, 11, 153eqtrd 2660 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937  -cneg 10267  GrpOpcgr 27343  invcgn 27345  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nvdif  27521
  Copyright terms: Public domain W3C validator