![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvnegneg | Structured version Visualization version GIF version |
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnegneg.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvnegneg.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvnegneg | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11124 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | nvnegneg.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvnegneg.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvscl 27481 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
5 | 1, 4 | mp3an2 1412 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
6 | eqid 2622 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
7 | eqid 2622 | . . . 4 ⊢ (inv‘( +𝑣 ‘𝑈)) = (inv‘( +𝑣 ‘𝑈)) | |
8 | 2, 6, 3, 7 | nvinv 27494 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
9 | 5, 8 | syldan 487 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
10 | 2, 6, 3, 7 | nvinv 27494 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣 ‘𝑈))‘𝐴)) |
11 | 10 | fveq2d 6195 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴))) |
12 | 6 | nvgrp 27472 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
13 | 2, 6 | bafval 27459 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
14 | 13, 7 | grpo2inv 27385 | . . 3 ⊢ ((( +𝑣 ‘𝑈) ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
15 | 12, 14 | sylan 488 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
16 | 9, 11, 15 | 3eqtrd 2660 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 1c1 9937 -cneg 10267 GrpOpcgr 27343 invcgn 27345 NrmCVeccnv 27439 +𝑣 cpv 27440 BaseSetcba 27441 ·𝑠OLD cns 27442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 df-grpo 27347 df-gid 27348 df-ginv 27349 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 |
This theorem is referenced by: nvdif 27521 |
Copyright terms: Public domain | W3C validator |