MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvf Structured version   Visualization version   GIF version

Theorem grpoinvf 27386
Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvf (𝐺 ∈ GrpOp → 𝑁:𝑋1-1-onto𝑋)

Proof of Theorem grpoinvf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6615 . . . 4 (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺)) ∈ V
2 eqid 2622 . . . 4 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺)))
31, 2fnmpti 6022 . . 3 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) Fn 𝑋
4 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
5 eqid 2622 . . . . 5 (GId‘𝐺) = (GId‘𝐺)
6 grpasscan1.2 . . . . 5 𝑁 = (inv‘𝐺)
74, 5, 6grpoinvfval 27376 . . . 4 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))))
87fneq1d 5981 . . 3 (𝐺 ∈ GrpOp → (𝑁 Fn 𝑋 ↔ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) Fn 𝑋))
93, 8mpbiri 248 . 2 (𝐺 ∈ GrpOp → 𝑁 Fn 𝑋)
10 fnrnfv 6242 . . . 4 (𝑁 Fn 𝑋 → ran 𝑁 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
119, 10syl 17 . . 3 (𝐺 ∈ GrpOp → ran 𝑁 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
124, 6grpoinvcl 27378 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → (𝑁𝑦) ∈ 𝑋)
134, 6grpo2inv 27385 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → (𝑁‘(𝑁𝑦)) = 𝑦)
1413eqcomd 2628 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → 𝑦 = (𝑁‘(𝑁𝑦)))
15 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝑁𝑦) → (𝑁𝑥) = (𝑁‘(𝑁𝑦)))
1615eqeq2d 2632 . . . . . . . 8 (𝑥 = (𝑁𝑦) → (𝑦 = (𝑁𝑥) ↔ 𝑦 = (𝑁‘(𝑁𝑦))))
1716rspcev 3309 . . . . . . 7 (((𝑁𝑦) ∈ 𝑋𝑦 = (𝑁‘(𝑁𝑦))) → ∃𝑥𝑋 𝑦 = (𝑁𝑥))
1812, 14, 17syl2anc 693 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ∃𝑥𝑋 𝑦 = (𝑁𝑥))
1918ex 450 . . . . 5 (𝐺 ∈ GrpOp → (𝑦𝑋 → ∃𝑥𝑋 𝑦 = (𝑁𝑥)))
20 simpr 477 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → 𝑦 = (𝑁𝑥))
214, 6grpoinvcl 27378 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋) → (𝑁𝑥) ∈ 𝑋)
2221adantr 481 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → (𝑁𝑥) ∈ 𝑋)
2320, 22eqeltrd 2701 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → 𝑦𝑋)
2423exp31 630 . . . . . 6 (𝐺 ∈ GrpOp → (𝑥𝑋 → (𝑦 = (𝑁𝑥) → 𝑦𝑋)))
2524rexlimdv 3030 . . . . 5 (𝐺 ∈ GrpOp → (∃𝑥𝑋 𝑦 = (𝑁𝑥) → 𝑦𝑋))
2619, 25impbid 202 . . . 4 (𝐺 ∈ GrpOp → (𝑦𝑋 ↔ ∃𝑥𝑋 𝑦 = (𝑁𝑥)))
2726abbi2dv 2742 . . 3 (𝐺 ∈ GrpOp → 𝑋 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
2811, 27eqtr4d 2659 . 2 (𝐺 ∈ GrpOp → ran 𝑁 = 𝑋)
29 fveq2 6191 . . . 4 ((𝑁𝑥) = (𝑁𝑦) → (𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)))
304, 6grpo2inv 27385 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋) → (𝑁‘(𝑁𝑥)) = 𝑥)
3130, 13eqeqan12d 2638 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ (𝐺 ∈ GrpOp ∧ 𝑦𝑋)) → ((𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)) ↔ 𝑥 = 𝑦))
3231anandis 873 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)) ↔ 𝑥 = 𝑦))
3329, 32syl5ib 234 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦))
3433ralrimivva 2971 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦))
35 dff1o6 6531 . 2 (𝑁:𝑋1-1-onto𝑋 ↔ (𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦)))
369, 28, 34, 35syl3anbrc 1246 1 (𝐺 ∈ GrpOp → 𝑁:𝑋1-1-onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  cmpt 4729  ran crn 5115   Fn wfn 5883  1-1-ontowf1o 5887  cfv 5888  crio 6610  (class class class)co 6650  GrpOpcgr 27343  GIdcgi 27344  invcgn 27345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348  df-ginv 27349
This theorem is referenced by:  nvinvfval  27495
  Copyright terms: Public domain W3C validator