MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinveu Structured version   Visualization version   GIF version

Theorem grpoinveu 27373
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinveu.1 𝑋 = ran 𝐺
grpinveu.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoinveu ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoinveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grpinveu.1 . . . . 5 𝑋 = ran 𝐺
2 grpinveu.2 . . . . 5 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 27369 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4 simpl 473 . . . . . 6 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
54reximi 3011 . . . . 5 (∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
65adantl 482 . . . 4 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
73, 6syl 17 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
8 eqtr3 2643 . . . . . . . . . . . 12 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
91grporcan 27372 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → ((𝑦𝐺𝐴) = (𝑧𝐺𝐴) ↔ 𝑦 = 𝑧))
108, 9syl5ib 234 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝑦𝑋𝑧𝑋𝐴𝑋)) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
11103exp2 1285 . . . . . . . . . 10 (𝐺 ∈ GrpOp → (𝑦𝑋 → (𝑧𝑋 → (𝐴𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1211com24 95 . . . . . . . . 9 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝑧𝑋 → (𝑦𝑋 → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧)))))
1312imp41 619 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑧𝑋) ∧ 𝑦𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1413an32s 846 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝑧𝐺𝐴) = 𝑈) → 𝑦 = 𝑧))
1514expd 452 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1615ralrimdva 2969 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
1716ancld 576 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
1817reximdva 3017 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∃𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧))))
197, 18mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
20 oveq1 6657 . . . 4 (𝑦 = 𝑧 → (𝑦𝐺𝐴) = (𝑧𝐺𝐴))
2120eqeq1d 2624 . . 3 (𝑦 = 𝑧 → ((𝑦𝐺𝐴) = 𝑈 ↔ (𝑧𝐺𝐴) = 𝑈))
2221reu8 3402 . 2 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ ∀𝑧𝑋 ((𝑧𝐺𝐴) = 𝑈𝑦 = 𝑧)))
2319, 22sylibr 224 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  ran crn 5115  cfv 5888  (class class class)co 6650  GrpOpcgr 27343  GIdcgi 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348
This theorem is referenced by:  grpoinvcl  27378  grpoinv  27379
  Copyright terms: Public domain W3C validator