MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinveu Structured version   Visualization version   Unicode version

Theorem grpoinveu 27373
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinveu.1  |-  X  =  ran  G
grpinveu.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoinveu  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E! y  e.  X  (
y G A )  =  U )
Distinct variable groups:    y, A    y, G    y, U    y, X

Proof of Theorem grpoinveu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grpinveu.1 . . . . 5  |-  X  =  ran  G
2 grpinveu.2 . . . . 5  |-  U  =  (GId `  G )
31, 2grpoidinv2 27369 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
4 simpl 473 . . . . . 6  |-  ( ( ( y G A )  =  U  /\  ( A G y )  =  U )  -> 
( y G A )  =  U )
54reximi 3011 . . . . 5  |-  ( E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U )  ->  E. y  e.  X  ( y G A )  =  U )
65adantl 482 . . . 4  |-  ( ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) )  ->  E. y  e.  X  ( y G A )  =  U )
73, 6syl 17 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E. y  e.  X  ( y G A )  =  U )
8 eqtr3 2643 . . . . . . . . . . . 12  |-  ( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  ( y G A )  =  ( z G A ) )
91grporcan 27372 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  (
y  e.  X  /\  z  e.  X  /\  A  e.  X )
)  ->  ( (
y G A )  =  ( z G A )  <->  y  =  z ) )
108, 9syl5ib 234 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  (
y  e.  X  /\  z  e.  X  /\  A  e.  X )
)  ->  ( (
( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
11103exp2 1285 . . . . . . . . . 10  |-  ( G  e.  GrpOp  ->  ( y  e.  X  ->  ( z  e.  X  ->  ( A  e.  X  ->  ( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) ) ) ) )
1211com24 95 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( z  e.  X  ->  (
y  e.  X  -> 
( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) ) ) ) )
1312imp41 619 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  z  e.  X )  /\  y  e.  X )  ->  (
( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
1413an32s 846 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
1514expd 452 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
( y G A )  =  U  -> 
( ( z G A )  =  U  ->  y  =  z ) ) )
1615ralrimdva 2969 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  ->  A. z  e.  X  ( (
z G A )  =  U  ->  y  =  z ) ) )
1716ancld 576 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  ->  (
( y G A )  =  U  /\  A. z  e.  X  ( ( z G A )  =  U  -> 
y  =  z ) ) ) )
1817reximdva 3017 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( E. y  e.  X  ( y G A )  =  U  ->  E. y  e.  X  ( ( y G A )  =  U  /\  A. z  e.  X  ( ( z G A )  =  U  ->  y  =  z ) ) ) )
197, 18mpd 15 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E. y  e.  X  ( (
y G A )  =  U  /\  A. z  e.  X  (
( z G A )  =  U  -> 
y  =  z ) ) )
20 oveq1 6657 . . . 4  |-  ( y  =  z  ->  (
y G A )  =  ( z G A ) )
2120eqeq1d 2624 . . 3  |-  ( y  =  z  ->  (
( y G A )  =  U  <->  ( z G A )  =  U ) )
2221reu8 3402 . 2  |-  ( E! y  e.  X  ( y G A )  =  U  <->  E. y  e.  X  ( (
y G A )  =  U  /\  A. z  e.  X  (
( z G A )  =  U  -> 
y  =  z ) ) )
2319, 22sylibr 224 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E! y  e.  X  (
y G A )  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348
This theorem is referenced by:  grpoinvcl  27378  grpoinv  27379
  Copyright terms: Public domain W3C validator