Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlateq Structured version   Visualization version   GIF version

Theorem hlateq 34685
Description: The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 29232 analog.) (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
hlatle.b 𝐵 = (Base‘𝐾)
hlatle.l = (le‘𝐾)
hlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlateq ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlateq
StepHypRef Expression
1 hlatle.b . . . . 5 𝐵 = (Base‘𝐾)
2 hlatle.l . . . . 5 = (le‘𝐾)
3 hlatle.a . . . . 5 𝐴 = (Atoms‘𝐾)
41, 2, 3hlatle 34684 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
51, 2, 3hlatle 34684 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
653com23 1271 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
74, 6anbi12d 747 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋))))
8 ralbiim 3069 . . 3 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
97, 8syl6rbbr 279 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (𝑋 𝑌𝑌 𝑋)))
10 hllat 34650 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
111, 2latasymb 17054 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
1210, 11syl3an1 1359 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
139, 12bitrd 268 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Latclat 17045  Atomscatm 34550  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  lauteq  35381  ltrneq2  35434
  Copyright terms: Public domain W3C validator