MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeontr Structured version   Visualization version   GIF version

Theorem hmeontr 21572
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeontr ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 21563 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 481 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 imassrn 5477 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
4 hmeoopn.1 . . . . . . . . 9 𝑋 = 𝐽
5 eqid 2622 . . . . . . . . 9 𝐾 = 𝐾
64, 5hmeof1o 21567 . . . . . . . 8 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
76adantr 481 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1-onto 𝐾)
8 f1ofo 6144 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋onto 𝐾)
9 forn 6118 . . . . . . 7 (𝐹:𝑋onto 𝐾 → ran 𝐹 = 𝐾)
107, 8, 93syl 18 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ran 𝐹 = 𝐾)
113, 10syl5sseq 3653 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ⊆ 𝐾)
125cnntri 21075 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
132, 11, 12syl2anc 693 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
14 f1of1 6136 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
157, 14syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1 𝐾)
16 f1imacnv 6153 . . . . . 6 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1715, 16sylancom 701 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1817fveq2d 6195 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))) = ((int‘𝐽)‘𝐴))
1913, 18sseqtrd 3641 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴))
20 f1ofun 6139 . . . . 5 (𝐹:𝑋1-1-onto 𝐾 → Fun 𝐹)
217, 20syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → Fun 𝐹)
22 cntop2 21045 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
232, 22syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
245ntrss3 20864 . . . . . 6 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2523, 11, 24syl2anc 693 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2625, 10sseqtr4d 3642 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹)
27 funimass1 5971 . . . 4 ((Fun 𝐹 ∧ ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2821, 26, 27syl2anc 693 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2919, 28mpd 15 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴)))
30 hmeocnvcn 21564 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
314cnntri 21075 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3230, 31sylan 488 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
33 imacnvcnv 5599 . . 3 (𝐹 “ ((int‘𝐽)‘𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))
34 imacnvcnv 5599 . . . 4 (𝐹𝐴) = (𝐹𝐴)
3534fveq2i 6194 . . 3 ((int‘𝐾)‘(𝐹𝐴)) = ((int‘𝐾)‘(𝐹𝐴))
3632, 33, 353sstr3g 3645 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3729, 36eqssd 3620 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574   cuni 4436  ccnv 5113  ran crn 5115  cima 5117  Fun wfun 5882  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Topctop 20698  intcnt 20821   Cn ccn 21028  Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-ntr 20824  df-cn 21031  df-hmeo 21558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator