MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofval Structured version   Visualization version   GIF version

Theorem hofval 16892
Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hofval.b 𝐵 = (Base‘𝐶)
hofval.h 𝐻 = (Hom ‘𝐶)
hofval.o · = (comp‘𝐶)
Assertion
Ref Expression
hofval (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑥,𝑦,𝐵   𝜑,𝑓,𝑔,,𝑥,𝑦   𝐶,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐻,𝑔,,𝑥,𝑦   · ,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem hofval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . 2 𝑀 = (HomF𝐶)
2 df-hof 16890 . . . 4 HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
32a1i 11 . . 3 (𝜑 → HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩))
4 simpr 477 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
54fveq2d 6195 . . . 4 ((𝜑𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
6 fvexd 6203 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) ∈ V)
74fveq2d 6195 . . . . . 6 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = (Base‘𝐶))
8 hofval.b . . . . . 6 𝐵 = (Base‘𝐶)
97, 8syl6eqr 2674 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = 𝐵)
10 simpr 477 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1110sqxpeqd 5141 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
12 simplr 792 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
1312fveq2d 6195 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
14 hofval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
1513, 14syl6eqr 2674 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1615oveqd 6667 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((1st𝑦)(Hom ‘𝑐)(1st𝑥)) = ((1st𝑦)𝐻(1st𝑥)))
1715oveqd 6667 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) = ((2nd𝑥)𝐻(2nd𝑦)))
1815fveq1d 6193 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
1912fveq2d 6195 . . . . . . . . . . 11 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = (comp‘𝐶))
20 hofval.o . . . . . . . . . . 11 · = (comp‘𝐶)
2119, 20syl6eqr 2674 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = · )
2221oveqd 6667 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦)) = (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)))
2321oveqd 6667 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥(comp‘𝑐)(2nd𝑦)) = (𝑥 · (2nd𝑦)))
2423oveqd 6667 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑔(𝑥(comp‘𝑐)(2nd𝑦))) = (𝑔(𝑥 · (2nd𝑦))))
25 eqidd 2623 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
2622, 24, 25oveq123d 6671 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓) = ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))
2718, 26mpteq12dv 4733 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)) = ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))
2816, 17, 27mpt2eq123dv 6717 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))
2911, 11, 28mpt2eq123dv 6717 . . . . 5 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
306, 9, 29csbied2 3561 . . . 4 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
315, 30opeq12d 4410 . . 3 ((𝜑𝑐 = 𝐶) → ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
32 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
33 opex 4932 . . . 4 ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V
3433a1i 11 . . 3 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V)
353, 31, 32, 34fvmptd 6288 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
361, 35syl5eq 2668 1 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cop 4183  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Homf chomf 16327  HomFchof 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-hof 16890
This theorem is referenced by:  hof1fval  16893  hof2fval  16895  hofcl  16899  hofpropd  16907
  Copyright terms: Public domain W3C validator