MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2fval Structured version   Visualization version   GIF version

Theorem hof2fval 16895
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
Assertion
Ref Expression
hof2fval (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Distinct variable groups:   𝑓,𝑔,,𝐵   𝜑,𝑓,𝑔,   𝐶,𝑓,𝑔,   𝑓,𝐻,𝑔,   𝑓,𝑊,𝑔,   · ,𝑓,𝑔,   𝑓,𝑋,𝑔,   𝑓,𝑌,𝑔,   𝑓,𝑍,𝑔,
Allowed substitution hints:   𝑀(𝑓,𝑔,)

Proof of Theorem hof2fval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
3 hof1.b . . . 4 𝐵 = (Base‘𝐶)
4 hof1.h . . . 4 𝐻 = (Hom ‘𝐶)
5 hof2.o . . . 4 · = (comp‘𝐶)
61, 2, 3, 4, 5hofval 16892 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
7 fvex 6201 . . . 4 (Homf𝐶) ∈ V
8 fvex 6201 . . . . . . 7 (Base‘𝐶) ∈ V
93, 8eqeltri 2697 . . . . . 6 𝐵 ∈ V
109, 9xpex 6962 . . . . 5 (𝐵 × 𝐵) ∈ V
1110, 10mpt2ex 7247 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))) ∈ V
127, 11op2ndd 7179 . . 3 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
136, 12syl 17 . 2 (𝜑 → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
14 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑦 = ⟨𝑍, 𝑊⟩)
1514fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = (1st ‘⟨𝑍, 𝑊⟩))
16 hof2.z . . . . . . 7 (𝜑𝑍𝐵)
17 hof2.w . . . . . . 7 (𝜑𝑊𝐵)
18 op1stg 7180 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1916, 17, 18syl2anc 693 . . . . . 6 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2019adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2115, 20eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = 𝑍)
22 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2322fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
24 hof1.x . . . . . . 7 (𝜑𝑋𝐵)
25 hof1.y . . . . . . 7 (𝜑𝑌𝐵)
26 op1stg 7180 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2724, 25, 26syl2anc 693 . . . . . 6 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2827adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2923, 28eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = 𝑋)
3021, 29oveq12d 6668 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((1st𝑦)𝐻(1st𝑥)) = (𝑍𝐻𝑋))
3122fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
32 op2ndg 7181 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3324, 25, 32syl2anc 693 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3433adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3531, 34eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = 𝑌)
3614fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = (2nd ‘⟨𝑍, 𝑊⟩))
37 op2ndg 7181 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3816, 17, 37syl2anc 693 . . . . . 6 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3938adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
4036, 39eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = 𝑊)
4135, 40oveq12d 6668 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑌𝐻𝑊))
4222fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
43 df-ov 6653 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
4442, 43syl6eqr 2674 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝑋𝐻𝑌))
4521, 29opeq12d 4410 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ⟨(1st𝑦), (1st𝑥)⟩ = ⟨𝑍, 𝑋⟩)
4645, 40oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)) = (⟨𝑍, 𝑋· 𝑊))
4722, 40oveq12d 6668 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑥 · (2nd𝑦)) = (⟨𝑋, 𝑌· 𝑊))
4847oveqd 6667 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑔(𝑥 · (2nd𝑦))) = (𝑔(⟨𝑋, 𝑌· 𝑊)))
49 eqidd 2623 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑓 = 𝑓)
5046, 48, 49oveq123d 6671 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓) = ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))
5144, 50mpteq12dv 4733 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓)))
5230, 41, 51mpt2eq123dv 6717 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
53 opelxpi 5148 . . 3 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
5424, 25, 53syl2anc 693 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
55 opelxpi 5148 . . 3 ((𝑍𝐵𝑊𝐵) → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
5616, 17, 55syl2anc 693 . 2 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
57 ovex 6678 . . . 4 (𝑍𝐻𝑋) ∈ V
58 ovex 6678 . . . 4 (𝑌𝐻𝑊) ∈ V
5957, 58mpt2ex 7247 . . 3 (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V
6059a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V)
6113, 52, 54, 56, 60ovmpt2d 6788 1 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Homf chomf 16327  HomFchof 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-hof 16890
This theorem is referenced by:  hof2val  16896
  Copyright terms: Public domain W3C validator