MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iducn Structured version   Visualization version   GIF version

Theorem iducn 22087
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
iducn (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))

Proof of Theorem iducn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
2 f1of 6137 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
31, 2mp1i 13 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋𝑋)
4 simpr 477 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → 𝑠𝑈)
5 fvresi 6439 . . . . . . . 8 (𝑥𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥)
6 fvresi 6439 . . . . . . . 8 (𝑦𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦)
75, 6breqan12d 4669 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦))
87biimprd 238 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
98adantl 482 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
109ralrimivva 2971 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
11 breq 4655 . . . . . . 7 (𝑟 = 𝑠 → (𝑥𝑟𝑦𝑥𝑠𝑦))
1211imbi1d 331 . . . . . 6 (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
13122ralbidv 2989 . . . . 5 (𝑟 = 𝑠 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
1413rspcev 3309 . . . 4 ((𝑠𝑈 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
154, 10, 14syl2anc 693 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
1615ralrimiva 2966 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
17 isucn 22082 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
1817anidms 677 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
193, 16, 18mpbir2and 957 1 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653   I cid 5023  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ust 22004  df-ucn 22080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator