MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iducn Structured version   Visualization version   Unicode version

Theorem iducn 22087
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
iducn  |-  ( U  e.  (UnifOn `  X
)  ->  (  _I  |`  X )  e.  ( U Cnu U ) )

Proof of Theorem iducn
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . 3  |-  (  _I  |`  X ) : X -1-1-onto-> X
2 f1of 6137 . . 3  |-  ( (  _I  |`  X ) : X -1-1-onto-> X  ->  (  _I  |`  X ) : X --> X )
31, 2mp1i 13 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  (  _I  |`  X ) : X --> X )
4 simpr 477 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  s  e.  U )  ->  s  e.  U )
5 fvresi 6439 . . . . . . . 8  |-  ( x  e.  X  ->  (
(  _I  |`  X ) `
 x )  =  x )
6 fvresi 6439 . . . . . . . 8  |-  ( y  e.  X  ->  (
(  _I  |`  X ) `
 y )  =  y )
75, 6breqan12d 4669 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( (  _I  |`  X ) `  x
) s ( (  _I  |`  X ) `  y )  <->  x s
y ) )
87biimprd 238 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x s y  ->  ( (  _I  |`  X ) `  x
) s ( (  _I  |`  X ) `  y ) ) )
98adantl 482 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  s  e.  U )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
s y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )
109ralrimivva 2971 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  s  e.  U )  ->  A. x  e.  X  A. y  e.  X  ( x
s y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )
11 breq 4655 . . . . . . 7  |-  ( r  =  s  ->  (
x r y  <->  x s
y ) )
1211imbi1d 331 . . . . . 6  |-  ( r  =  s  ->  (
( x r y  ->  ( (  _I  |`  X ) `  x
) s ( (  _I  |`  X ) `  y ) )  <->  ( x
s y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) ) )
13122ralbidv 2989 . . . . 5  |-  ( r  =  s  ->  ( A. x  e.  X  A. y  e.  X  ( x r y  ->  ( (  _I  |`  X ) `  x
) s ( (  _I  |`  X ) `  y ) )  <->  A. x  e.  X  A. y  e.  X  ( x
s y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) ) )
1413rspcev 3309 . . . 4  |-  ( ( s  e.  U  /\  A. x  e.  X  A. y  e.  X  (
x s y  -> 
( (  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )
154, 10, 14syl2anc 693 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  s  e.  U )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )
1615ralrimiva 2966 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  A. s  e.  U  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  (
(  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) )
17 isucn 22082 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  U  e.  (UnifOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( U Cnu U )  <->  ( (  _I  |`  X ) : X --> X  /\  A. s  e.  U  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( (  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) ) ) )
1817anidms 677 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( (  _I  |`  X )  e.  ( U Cnu U )  <->  ( (  _I  |`  X ) : X --> X  /\  A. s  e.  U  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( (  _I  |`  X ) `
 x ) s ( (  _I  |`  X ) `
 y ) ) ) ) )
193, 16, 18mpbir2and 957 1  |-  ( U  e.  (UnifOn `  X
)  ->  (  _I  |`  X )  e.  ( U Cnu U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    _I cid 5023    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ust 22004  df-ucn 22080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator