MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima Structured version   Visualization version   GIF version

Theorem xpima 5576
Description: The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
xpima ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)

Proof of Theorem xpima
StepHypRef Expression
1 exmid 431 . . 3 ((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅)
2 df-ima 5127 . . . . . . . 8 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
3 df-res 5126 . . . . . . . . 9 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
43rneqi 5352 . . . . . . . 8 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
52, 4eqtri 2644 . . . . . . 7 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
6 inxp 5254 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
76rneqi 5352 . . . . . . 7 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
8 inv1 3970 . . . . . . . . 9 (𝐵 ∩ V) = 𝐵
98xpeq2i 5136 . . . . . . . 8 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
109rneqi 5352 . . . . . . 7 ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ((𝐴𝐶) × 𝐵)
115, 7, 103eqtri 2648 . . . . . 6 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × 𝐵)
12 xpeq1 5128 . . . . . . . . 9 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = (∅ × 𝐵))
13 0xp 5199 . . . . . . . . 9 (∅ × 𝐵) = ∅
1412, 13syl6eq 2672 . . . . . . . 8 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = ∅)
1514rneqd 5353 . . . . . . 7 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ran ∅)
16 rn0 5377 . . . . . . 7 ran ∅ = ∅
1715, 16syl6eq 2672 . . . . . 6 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ∅)
1811, 17syl5eq 2668 . . . . 5 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
1918ancli 574 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅))
20 df-ne 2795 . . . . . . 7 ((𝐴𝐶) ≠ ∅ ↔ ¬ (𝐴𝐶) = ∅)
21 rnxp 5564 . . . . . . 7 ((𝐴𝐶) ≠ ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2220, 21sylbir 225 . . . . . 6 (¬ (𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2311, 22syl5eq 2668 . . . . 5 (¬ (𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
2423ancli 574 . . . 4 (¬ (𝐴𝐶) = ∅ → (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
2519, 24orim12i 538 . . 3 (((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅) → (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
261, 25ax-mp 5 . 2 (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
27 eqif 4126 . 2 (((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵) ↔ (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
2826, 27mpbir 221 1 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1483  wne 2794  Vcvv 3200  cin 3573  c0 3915  ifcif 4086   × cxp 5112  ran crn 5115  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  xpima1  5577  xpima2  5578  imadifxp  29414  bj-xpimasn  32942
  Copyright terms: Public domain W3C validator