Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfi Structured version   Visualization version   GIF version

Theorem relfi 29415
Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Assertion
Ref Expression
relfi (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))

Proof of Theorem relfi
StepHypRef Expression
1 dmfi 8244 . . 3 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
2 rnfi 8249 . . 3 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
31, 2jca 554 . 2 (𝐴 ∈ Fin → (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))
4 xpfi 8231 . . . 4 ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → (dom 𝐴 × ran 𝐴) ∈ Fin)
5 relssdmrn 5656 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
6 ssfi 8180 . . . 4 (((dom 𝐴 × ran 𝐴) ∈ Fin ∧ 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) → 𝐴 ∈ Fin)
74, 5, 6syl2anr 495 . . 3 ((Rel 𝐴 ∧ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
87ex 450 . 2 (Rel 𝐴 → ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → 𝐴 ∈ Fin))
93, 8impbid2 216 1 (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wss 3574   × cxp 5112  dom cdm 5114  ran crn 5115  Rel wrel 5119  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  fpwrelmapffslem  29507
  Copyright terms: Public domain W3C validator