MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4c Structured version   Visualization version   GIF version

Theorem imp4c 617
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 447 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 447 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  imp44  622  imp5g  626  omordi  7646  omwordri  7652  omass  7660  oewordri  7672  umgrclwwlksge2  26912  upgr4cycl4dv4e  27045  elspansn5  28433  atcvat3i  29255  mdsymlem5  29266  sumdmdlem  29277  cvrat4  34729  sprsymrelfolem2  41743
  Copyright terms: Public domain W3C validator