MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Structured version   Visualization version   GIF version

Theorem oewordri 7672
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶)))

Proof of Theorem oewordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
2 oveq2 6658 . . . . 5 (𝑥 = ∅ → (𝐵𝑜 𝑥) = (𝐵𝑜 ∅))
31, 2sseq12d 3634 . . . 4 (𝑥 = ∅ → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ (𝐴𝑜 ∅) ⊆ (𝐵𝑜 ∅)))
4 oveq2 6658 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
5 oveq2 6658 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑜 𝑥) = (𝐵𝑜 𝑦))
64, 5sseq12d 3634 . . . 4 (𝑥 = 𝑦 → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦)))
7 oveq2 6658 . . . . 5 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
8 oveq2 6658 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑜 𝑥) = (𝐵𝑜 suc 𝑦))
97, 8sseq12d 3634 . . . 4 (𝑥 = suc 𝑦 → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦)))
10 oveq2 6658 . . . . 5 (𝑥 = 𝐶 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐶))
11 oveq2 6658 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑜 𝑥) = (𝐵𝑜 𝐶))
1210, 11sseq12d 3634 . . . 4 (𝑥 = 𝐶 → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶)))
13 onelon 5748 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
14 oe0 7602 . . . . . . 7 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
1513, 14syl 17 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴𝑜 ∅) = 1𝑜)
16 oe0 7602 . . . . . . 7 (𝐵 ∈ On → (𝐵𝑜 ∅) = 1𝑜)
1716adantr 481 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐵𝑜 ∅) = 1𝑜)
1815, 17eqtr4d 2659 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴𝑜 ∅) = (𝐵𝑜 ∅))
19 eqimss 3657 . . . . 5 ((𝐴𝑜 ∅) = (𝐵𝑜 ∅) → (𝐴𝑜 ∅) ⊆ (𝐵𝑜 ∅))
2018, 19syl 17 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴𝑜 ∅) ⊆ (𝐵𝑜 ∅))
21 simpl 473 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ On)
22 onelss 5766 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
2322imp 445 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴𝐵)
2413, 21, 23jca31 557 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵))
25 oecl 7617 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
26253adant2 1080 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
27 oecl 7617 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑜 𝑦) ∈ On)
28273adant1 1079 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑜 𝑦) ∈ On)
29 simp1 1061 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
30 omwordri 7652 . . . . . . . . . . . . 13 (((𝐴𝑜 𝑦) ∈ On ∧ (𝐵𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → ((𝐴𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐴)))
3126, 28, 29, 30syl3anc 1326 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → ((𝐴𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐴)))
3231imp 445 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦)) → ((𝐴𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐴))
3332adantrl 752 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → ((𝐴𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐴))
34 omwordi 7651 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵𝑜 𝑦) ∈ On) → (𝐴𝐵 → ((𝐵𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐵)))
3528, 34syld3an3 1371 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 → ((𝐵𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐵)))
3635imp 445 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐵))
3736adantrr 753 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → ((𝐵𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐵))
3833, 37sstrd 3613 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → ((𝐴𝑜 𝑦) ·𝑜 𝐴) ⊆ ((𝐵𝑜 𝑦) ·𝑜 𝐵))
39 oesuc 7607 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
40393adant2 1080 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
4140adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
42 oesuc 7607 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑜 suc 𝑦) = ((𝐵𝑜 𝑦) ·𝑜 𝐵))
43423adant1 1079 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑜 suc 𝑦) = ((𝐵𝑜 𝑦) ·𝑜 𝐵))
4443adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → (𝐵𝑜 suc 𝑦) = ((𝐵𝑜 𝑦) ·𝑜 𝐵))
4538, 41, 443sstr4d 3648 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦))) → (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦))
4645exp520 1288 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦))))))
4746com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦))))))
4847imp4c 617 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦))))
4924, 48syl5 34 . . . 4 (𝑦 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 suc 𝑦) ⊆ (𝐵𝑜 suc 𝑦))))
50 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
51 limelon 5788 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5250, 51mpan 706 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
53 0ellim 5787 . . . . . . . . . . 11 (Lim 𝑥 → ∅ ∈ 𝑥)
54 oe0m1 7601 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑𝑜 𝑥) = ∅))
5554biimpa 501 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → (∅ ↑𝑜 𝑥) = ∅)
5652, 53, 55syl2anc 693 . . . . . . . . . 10 (Lim 𝑥 → (∅ ↑𝑜 𝑥) = ∅)
57 0ss 3972 . . . . . . . . . 10 ∅ ⊆ (𝐵𝑜 𝑥)
5856, 57syl6eqss 3655 . . . . . . . . 9 (Lim 𝑥 → (∅ ↑𝑜 𝑥) ⊆ (𝐵𝑜 𝑥))
59 oveq1 6657 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴𝑜 𝑥) = (∅ ↑𝑜 𝑥))
6059sseq1d 3632 . . . . . . . . 9 (𝐴 = ∅ → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ (∅ ↑𝑜 𝑥) ⊆ (𝐵𝑜 𝑥)))
6158, 60syl5ibr 236 . . . . . . . 8 (𝐴 = ∅ → (Lim 𝑥 → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥)))
6261adantl 482 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥)))
6362a1dd 50 . . . . . 6 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥))))
64 ss2iun 4536 . . . . . . . 8 (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → 𝑦𝑥 (𝐴𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵𝑜 𝑦))
65 oelim 7614 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
6650, 65mpanlr1 722 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
6766an32s 846 . . . . . . . . . 10 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
6867adantllr 755 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
6921anim1i 592 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵 ∈ On ∧ Lim 𝑥))
70 ne0i 3921 . . . . . . . . . . . . . . 15 (𝐴𝐵𝐵 ≠ ∅)
71 on0eln0 5780 . . . . . . . . . . . . . . 15 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
7270, 71syl5ibr 236 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (𝐴𝐵 → ∅ ∈ 𝐵))
7372imp 445 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐴𝐵) → ∅ ∈ 𝐵)
7473adantr 481 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → ∅ ∈ 𝐵)
75 oelim 7614 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → (𝐵𝑜 𝑥) = 𝑦𝑥 (𝐵𝑜 𝑦))
7650, 75mpanlr1 722 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝐵𝑜 𝑥) = 𝑦𝑥 (𝐵𝑜 𝑦))
7769, 74, 76syl2anc 693 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵𝑜 𝑥) = 𝑦𝑥 (𝐵𝑜 𝑦))
7877adantlr 751 . . . . . . . . . 10 ((((𝐵 ∈ On ∧ 𝐴𝐵) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵𝑜 𝑥) = 𝑦𝑥 (𝐵𝑜 𝑦))
7978adantlll 754 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵𝑜 𝑥) = 𝑦𝑥 (𝐵𝑜 𝑦))
8068, 79sseq12d 3634 . . . . . . . 8 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → ((𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥) ↔ 𝑦𝑥 (𝐴𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵𝑜 𝑦)))
8164, 80syl5ibr 236 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥)))
8281ex 450 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥))))
8363, 82oe0lem 7593 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥))))
8413ancri 575 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)))
8583, 84syl11 33 . . . 4 (Lim 𝑥 → ((𝐵 ∈ On ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴𝑜 𝑦) ⊆ (𝐵𝑜 𝑦) → (𝐴𝑜 𝑥) ⊆ (𝐵𝑜 𝑥))))
863, 6, 9, 12, 20, 49, 85tfinds3 7064 . . 3 (𝐶 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶)))
8786expd 452 . 2 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶))))
8887impcom 446 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650  1𝑜c1o 7553   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeordsuc  7674
  Copyright terms: Public domain W3C validator