Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Visualization version   GIF version

Theorem cvrat4 34729
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 29256 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b 𝐵 = (Base‘𝐾)
cvrat4.l = (le‘𝐾)
cvrat4.j = (join‘𝐾)
cvrat4.z 0 = (0.‘𝐾)
cvrat4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   0 (𝑟)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 34647 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 481 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1067 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat4.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
5 cvrat4.l . . . . . . . . . . 11 = (le‘𝐾)
6 cvrat4.z . . . . . . . . . . 11 0 = (0.‘𝐾)
7 cvrat4.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 34603 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟 𝑋)
983exp 1264 . . . . . . . . 9 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋)))
102, 3, 9sylc 65 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
1110adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
12 simpll 790 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
13 simplr3 1105 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐴)
14 simpr 477 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑟𝐴)
15 cvrat4.j . . . . . . . . . . . . . . 15 = (join‘𝐾)
165, 15, 7hlatlej1 34661 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → 𝑄 (𝑄 𝑟))
1712, 13, 14, 16syl3anc 1326 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄 (𝑄 𝑟))
18 breq1 4656 . . . . . . . . . . . . 13 (𝑃 = 𝑄 → (𝑃 (𝑄 𝑟) ↔ 𝑄 (𝑄 𝑟)))
1917, 18syl5ibr 236 . . . . . . . . . . . 12 (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑃 (𝑄 𝑟)))
2019expd 452 . . . . . . . . . . 11 (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑟𝐴𝑃 (𝑄 𝑟))))
2120impcom 446 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴𝑃 (𝑄 𝑟)))
2221anim2d 589 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 𝑋𝑟𝐴) → (𝑟 𝑋𝑃 (𝑄 𝑟))))
2322expcomd 454 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴 → (𝑟 𝑋 → (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2423reximdvai 3015 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟𝐴 𝑟 𝑋 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2511, 24syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2625ex 450 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2726a1i 11 . . . 4 (𝑃 (𝑋 𝑄) → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2827com4l 92 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2928imp4a 614 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
30 hllat 34650 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3130adantr 481 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
32 simpr3 1069 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
334, 7atbase 34576 . . . . . . . . . . . . . 14 (𝑄𝐴𝑄𝐵)
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
354, 5, 15latleeqj2 17064 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3631, 34, 3, 35syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3736biimpa 501 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑋 𝑄) = 𝑋)
3837breq2d 4665 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) ↔ 𝑃 𝑋))
3938biimpa 501 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 𝑋)
4039expl 648 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑃 𝑋))
41 simpl 473 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
42 simpr2 1068 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
435, 15, 7hlatlej2 34662 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴) → 𝑃 (𝑄 𝑃))
4441, 32, 42, 43syl3anc 1326 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃 (𝑄 𝑃))
4540, 44jctird 567 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃 𝑋𝑃 (𝑄 𝑃))))
4645, 42jctild 566 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃)))))
4746impl 650 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))))
48 breq1 4656 . . . . . . 7 (𝑟 = 𝑃 → (𝑟 𝑋𝑃 𝑋))
49 oveq2 6658 . . . . . . . 8 (𝑟 = 𝑃 → (𝑄 𝑟) = (𝑄 𝑃))
5049breq2d 4665 . . . . . . 7 (𝑟 = 𝑃 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑃)))
5148, 50anbi12d 747 . . . . . 6 (𝑟 = 𝑃 → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ (𝑃 𝑋𝑃 (𝑄 𝑃))))
5251rspcev 3309 . . . . 5 ((𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5347, 52syl 17 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5453adantrl 752 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ (𝑋0𝑃 (𝑋 𝑄))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5554exp31 630 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
56 simpr 477 . . 3 ((𝑋0𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
57 ioran 511 . . . . 5 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
58 df-ne 2795 . . . . . 6 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
5958anbi1i 731 . . . . 5 ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
6057, 59bitr4i 267 . . . 4 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (𝑃𝑄 ∧ ¬ 𝑄 𝑋))
61 eqid 2622 . . . . . . . . . 10 (meet‘𝐾) = (meet‘𝐾)
624, 5, 15, 61, 7cvrat3 34728 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
63623expd 1284 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))))
6463imp4c 617 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
654, 7atbase 34576 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
6642, 65syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
674, 15latjcl 17051 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6831, 66, 34, 67syl3anc 1326 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
694, 5, 61latmle1 17076 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7031, 3, 68, 69syl3anc 1326 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7170adantr 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
72 simpll 790 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝐾 ∈ HL)
7363imp44 622 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
74 simplr2 1104 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃𝐴)
7534adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑄𝐵)
7673, 74, 753jca 1242 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵))
7772, 76jca 554 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)))
784, 5, 61, 6, 7atnle 34604 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑋𝐵) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
792, 32, 3, 78syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
804, 61latmcom 17075 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8131, 34, 3, 80syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8281eqeq1d 2624 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
8379, 82bitrd 268 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
844, 61latmcl 17052 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8531, 3, 68, 84syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8685, 3, 343jca 1242 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵))
8731, 86jca 554 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)))
884, 5, 61latmlem2 17082 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋)))
8987, 70, 88sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋))
9089, 81breqtrd 4679 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄))
91 breq2 4657 . . . . . . . . . . . . . . . 16 ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
9290, 91syl5ibcom 235 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
93 hlop 34649 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ OP)
9493adantr 481 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ OP)
954, 61latmcl 17052 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
9631, 34, 85, 95syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
974, 5, 6ople0 34474 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9894, 96, 97syl2anc 693 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9992, 98sylibd 229 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
10083, 99sylbid 230 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
101100imp 445 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
102101adantrl 752 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
103102adantrr 753 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
1044, 5, 61latmle2 17077 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
10531, 3, 68, 104syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
1064, 15latjcom 17059 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
10731, 66, 34, 106syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
108105, 107breqtrd 4679 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
109108adantr 481 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
11030adantr 481 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝐾 ∈ Lat)
111 simpr3 1069 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝑄𝐵)
112 simpr1 1067 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
1134, 7atbase 34576 . . . . . . . . . . . . . 14 ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
114112, 113syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
1154, 61latmcom 17075 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
116110, 111, 114, 115syl3anc 1326 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
117116eqeq1d 2624 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ))
1184, 5, 15, 61, 6, 7hlexch3 34677 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
1191183expia 1267 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
120117, 119sylbid 230 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12177, 103, 109, 120syl3c 66 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
12271, 121jca 554 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
123122ex 450 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12464, 123jcad 555 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))))
125 breq1 4656 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑟 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋))
126 oveq2 6658 . . . . . . . . 9 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑄 𝑟) = (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
127126breq2d 4665 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
128125, 127anbi12d 747 . . . . . . 7 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
129128rspcev 3309 . . . . . 6 (((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
130124, 129syl6 35 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
131130expd 452 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13260, 131syl5bi 232 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13356, 132syl7 74 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13429, 55, 133ecase3d 984 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  0.cp0 17037  Latclat 17045  OPcops 34459  Atomscatm 34550  AtLatcal 34551  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cvrat42  34730  ps-2  34764
  Copyright terms: Public domain W3C validator