Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfolem2 Structured version   Visualization version   GIF version

Theorem sprsymrelfolem2 41743
Description: Lemma 2 for sprsymrelfo 41747. (Contributed by AV, 23-Nov-2021.)
Hypothesis
Ref Expression
sprsymrelfo.q 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
Assertion
Ref Expression
sprsymrelfolem2 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐𝑄 𝑐 = {𝑥, 𝑦}))
Distinct variable groups:   𝑉,𝑞   𝑄,𝑐   𝑅,𝑎,𝑏,𝑐,𝑞,𝑥,𝑦   𝑉,𝑎,𝑏,𝑐,𝑥,𝑦   𝑊,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑄(𝑥,𝑦,𝑞,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑞)

Proof of Theorem sprsymrelfolem2
StepHypRef Expression
1 df-br 4654 . . . . . . . 8 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 simpl 473 . . . . . . . . . 10 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) → 𝑉𝑊)
3 ssel 3597 . . . . . . . . . . . . 13 (𝑅 ⊆ (𝑉 × 𝑉) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
43adantl 482 . . . . . . . . . . . 12 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
54imp 445 . . . . . . . . . . 11 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉))
6 opelxp 5146 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉) ↔ (𝑥𝑉𝑦𝑉))
75, 6sylib 208 . . . . . . . . . 10 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → (𝑥𝑉𝑦𝑉))
8 prelspr 41736 . . . . . . . . . 10 ((𝑉𝑊 ∧ (𝑥𝑉𝑦𝑉)) → {𝑥, 𝑦} ∈ (Pairs‘𝑉))
92, 7, 8syl2an2r 876 . . . . . . . . 9 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → {𝑥, 𝑦} ∈ (Pairs‘𝑉))
109ex 450 . . . . . . . 8 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → {𝑥, 𝑦} ∈ (Pairs‘𝑉)))
111, 10syl5bi 232 . . . . . . 7 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉)) → (𝑥𝑅𝑦 → {𝑥, 𝑦} ∈ (Pairs‘𝑉)))
12113adant3 1081 . . . . . 6 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → {𝑥, 𝑦} ∈ (Pairs‘𝑉)))
1312imp 445 . . . . 5 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} ∈ (Pairs‘𝑉))
14 vex 3203 . . . . . . . 8 𝑥 ∈ V
15 vex 3203 . . . . . . . 8 𝑦 ∈ V
16 vex 3203 . . . . . . . 8 𝑎 ∈ V
17 vex 3203 . . . . . . . 8 𝑏 ∈ V
1814, 15, 16, 17preq12b 4382 . . . . . . 7 ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ ((𝑥 = 𝑎𝑦 = 𝑏) ∨ (𝑥 = 𝑏𝑦 = 𝑎)))
19 breq12 4658 . . . . . . . . . . . . . 14 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑅𝑦𝑎𝑅𝑏))
2019biimpd 219 . . . . . . . . . . . . 13 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑅𝑦𝑎𝑅𝑏))
2120com12 32 . . . . . . . . . . . 12 (𝑥𝑅𝑦 → ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑎𝑅𝑏))
2221adantl 482 . . . . . . . . . . 11 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑎𝑅𝑏))
2322adantr 481 . . . . . . . . . 10 ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑎𝑅𝑏))
2423com12 32 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑅𝑏))
25 rsp2 2936 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥) → ((𝑥𝑉𝑦𝑉) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
2625ancomsd 470 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥) → ((𝑦𝑉𝑥𝑉) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
2726imp 445 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ (𝑦𝑉𝑥𝑉)) → (𝑥𝑅𝑦𝑦𝑅𝑥))
2827biimpd 219 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥) ∧ (𝑦𝑉𝑥𝑉)) → (𝑥𝑅𝑦𝑦𝑅𝑥))
2928ex 450 . . . . . . . . . . . . . . 15 (∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥) → ((𝑦𝑉𝑥𝑉) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
30293ad2ant3 1084 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → ((𝑦𝑉𝑥𝑉) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
3130com23 86 . . . . . . . . . . . . 13 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → ((𝑦𝑉𝑥𝑉) → 𝑦𝑅𝑥)))
3231imp 445 . . . . . . . . . . . 12 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ((𝑦𝑉𝑥𝑉) → 𝑦𝑅𝑥))
3332adantl 482 . . . . . . . . . . 11 (((𝑥 = 𝑏𝑦 = 𝑎) ∧ ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → ((𝑦𝑉𝑥𝑉) → 𝑦𝑅𝑥))
34 eleq1 2689 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑦𝑉𝑎𝑉))
35 eleq1 2689 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥𝑉𝑏𝑉))
3634, 35bi2anan9r 918 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝑎) → ((𝑦𝑉𝑥𝑉) ↔ (𝑎𝑉𝑏𝑉)))
37 breq12 4658 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑅𝑥𝑎𝑅𝑏))
3837ancoms 469 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = 𝑎) → (𝑦𝑅𝑥𝑎𝑅𝑏))
3936, 38imbi12d 334 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = 𝑎) → (((𝑦𝑉𝑥𝑉) → 𝑦𝑅𝑥) ↔ ((𝑎𝑉𝑏𝑉) → 𝑎𝑅𝑏)))
4039adantr 481 . . . . . . . . . . 11 (((𝑥 = 𝑏𝑦 = 𝑎) ∧ ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → (((𝑦𝑉𝑥𝑉) → 𝑦𝑅𝑥) ↔ ((𝑎𝑉𝑏𝑉) → 𝑎𝑅𝑏)))
4133, 40mpbid 222 . . . . . . . . . 10 (((𝑥 = 𝑏𝑦 = 𝑎) ∧ ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → ((𝑎𝑉𝑏𝑉) → 𝑎𝑅𝑏))
4241expimpd 629 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = 𝑎) → ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑅𝑏))
4324, 42jaoi 394 . . . . . . . 8 (((𝑥 = 𝑎𝑦 = 𝑏) ∨ (𝑥 = 𝑏𝑦 = 𝑎)) → ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑅𝑏))
4443com12 32 . . . . . . 7 ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → (((𝑥 = 𝑎𝑦 = 𝑏) ∨ (𝑥 = 𝑏𝑦 = 𝑎)) → 𝑎𝑅𝑏))
4518, 44syl5bi 232 . . . . . 6 ((((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))
4645ralrimivva 2971 . . . . 5 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ∀𝑎𝑉𝑏𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))
47 sprsymrelfo.q . . . . . . 7 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
4847eleq2i 2693 . . . . . 6 ({𝑥, 𝑦} ∈ 𝑄 ↔ {𝑥, 𝑦} ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)})
49 eqeq1 2626 . . . . . . . . 9 (𝑞 = {𝑥, 𝑦} → (𝑞 = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = {𝑎, 𝑏}))
5049imbi1d 331 . . . . . . . 8 (𝑞 = {𝑥, 𝑦} → ((𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
51502ralbidv 2989 . . . . . . 7 (𝑞 = {𝑥, 𝑦} → (∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ∀𝑎𝑉𝑏𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
5251elrab 3363 . . . . . 6 ({𝑥, 𝑦} ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ↔ ({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
5348, 52bitri 264 . . . . 5 ({𝑥, 𝑦} ∈ 𝑄 ↔ ({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
5413, 46, 53sylanbrc 698 . . . 4 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} ∈ 𝑄)
55 eqidd 2623 . . . 4 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} = {𝑥, 𝑦})
56 eqeq1 2626 . . . . 5 (𝑐 = {𝑥, 𝑦} → (𝑐 = {𝑥, 𝑦} ↔ {𝑥, 𝑦} = {𝑥, 𝑦}))
5756rspcev 3309 . . . 4 (({𝑥, 𝑦} ∈ 𝑄 ∧ {𝑥, 𝑦} = {𝑥, 𝑦}) → ∃𝑐𝑄 𝑐 = {𝑥, 𝑦})
5854, 55, 57syl2anc 693 . . 3 (((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ∃𝑐𝑄 𝑐 = {𝑥, 𝑦})
5958ex 450 . 2 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → ∃𝑐𝑄 𝑐 = {𝑥, 𝑦}))
6047eleq2i 2693 . . . . . 6 (𝑐𝑄𝑐 ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)})
61 eqeq1 2626 . . . . . . . . 9 (𝑞 = 𝑐 → (𝑞 = {𝑎, 𝑏} ↔ 𝑐 = {𝑎, 𝑏}))
6261imbi1d 331 . . . . . . . 8 (𝑞 = 𝑐 → ((𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
63622ralbidv 2989 . . . . . . 7 (𝑞 = 𝑐 → (∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
6463elrab 3363 . . . . . 6 (𝑐 ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ↔ (𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
6560, 64bitri 264 . . . . 5 (𝑐𝑄 ↔ (𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)))
66 eleq1 2689 . . . . . . . . . . 11 (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ (Pairs‘𝑉) ↔ {𝑥, 𝑦} ∈ (Pairs‘𝑉)))
67 prsprel 41737 . . . . . . . . . . . 12 (({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑉𝑦𝑉))
6814, 15, 67mpanr12 721 . . . . . . . . . . 11 ({𝑥, 𝑦} ∈ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))
6966, 68syl6bi 243 . . . . . . . . . 10 (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
7069com12 32 . . . . . . . . 9 (𝑐 ∈ (Pairs‘𝑉) → (𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
7170adantr 481 . . . . . . . 8 ((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) → (𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
7271imp 445 . . . . . . 7 (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → (𝑥𝑉𝑦𝑉))
73 preq1 4268 . . . . . . . . . . . 12 (𝑎 = 𝑥 → {𝑎, 𝑏} = {𝑥, 𝑏})
7473eqeq2d 2632 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 = {𝑎, 𝑏} ↔ 𝑐 = {𝑥, 𝑏}))
75 breq1 4656 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑅𝑏𝑥𝑅𝑏))
7674, 75imbi12d 334 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ (𝑐 = {𝑥, 𝑏} → 𝑥𝑅𝑏)))
77 preq2 4269 . . . . . . . . . . . 12 (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦})
7877eqeq2d 2632 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑐 = {𝑥, 𝑏} ↔ 𝑐 = {𝑥, 𝑦}))
79 breq2 4657 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑥𝑅𝑏𝑥𝑅𝑦))
8078, 79imbi12d 334 . . . . . . . . . 10 (𝑏 = 𝑦 → ((𝑐 = {𝑥, 𝑏} → 𝑥𝑅𝑏) ↔ (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦)))
8176, 80rspc2v 3322 . . . . . . . . 9 ((𝑥𝑉𝑦𝑉) → (∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) → (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦)))
8281a1d 25 . . . . . . . 8 ((𝑥𝑉𝑦𝑉) → (𝑐 ∈ (Pairs‘𝑉) → (∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) → (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦))))
8382imp4c 617 . . . . . . 7 ((𝑥𝑉𝑦𝑉) → (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → 𝑥𝑅𝑦))
8472, 83mpcom 38 . . . . . 6 (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → 𝑥𝑅𝑦)
8584a1d 25 . . . . 5 (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎𝑉𝑏𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥𝑅𝑦))
8665, 85sylanb 489 . . . 4 ((𝑐𝑄𝑐 = {𝑥, 𝑦}) → ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥𝑅𝑦))
8786rexlimiva 3028 . . 3 (∃𝑐𝑄 𝑐 = {𝑥, 𝑦} → ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥𝑅𝑦))
8887com12 32 . 2 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (∃𝑐𝑄 𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦))
8959, 88impbid 202 1 ((𝑉𝑊𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥𝑅𝑦𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐𝑄 𝑐 = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  {cpr 4179  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by:  sprsymrelfo  41747
  Copyright terms: Public domain W3C validator