MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 7652
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
2 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
31, 2sseq12d 3634 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅)))
4 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
5 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
64, 5sseq12d 3634 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦)))
7 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
8 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
97, 8sseq12d 3634 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)))
10 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶))
11 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
1210, 11sseq12d 3634 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
13 om0 7597 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
14 0ss 3972 . . . . . . 7 ∅ ⊆ (𝐵 ·𝑜 ∅)
1513, 14syl6eqss 3655 . . . . . 6 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅))
1615ad2antrr 762 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅))
17 omcl 7616 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
18173adant2 1080 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
19 omcl 7616 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
20193adant1 1079 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
21 simp1 1061 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 7630 . . . . . . . . . . . . 13 (((𝐴 ·𝑜 𝑦) ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴)))
2318, 20, 21, 22syl3anc 1326 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴)))
2423imp 445 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴))
2524adantrl 752 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴))
26 oaword 7629 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2720, 26syld3an3 1371 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2827biimpa 501 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2928adantrr 753 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3025, 29sstrd 3613 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
31 omsuc 7606 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
32313adant2 1080 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
3332adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
34 omsuc 7606 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
35343adant1 1079 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3635adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3730, 33, 363sstr4d 3648 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))
3837exp520 1288 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))))
3938com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))))
4039imp4c 617 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))
41 vex 3203 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4536 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → 𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵 ·𝑜 𝑦))
43 omlim 7613 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·𝑜 𝑥) = 𝑦𝑥 (𝐴 ·𝑜 𝑦))
4443ad2ant2rl 785 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·𝑜 𝑥) = 𝑦𝑥 (𝐴 ·𝑜 𝑦))
45 omlim 7613 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·𝑜 𝑥) = 𝑦𝑥 (𝐵 ·𝑜 𝑦))
4645adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·𝑜 𝑥) = 𝑦𝑥 (𝐵 ·𝑜 𝑦))
4744, 46sseq12d 3634 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ 𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵 ·𝑜 𝑦)))
4842, 47syl5ibr 236 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
4948anandirs 874 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
5041, 49mpanr1 719 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
5150expcom 451 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))))
5251adantrd 484 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 7064 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
5453expd 452 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))))
55543impib 1262 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
56553coml 1272 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omword2  7654  oewordri  7672  oeordsuc  7674
  Copyright terms: Public domain W3C validator