| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐴 ·𝑜
𝑥) = (𝐴 ·𝑜
∅)) |
| 2 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐵 ·𝑜
𝑥) = (𝐵 ·𝑜
∅)) |
| 3 | 1, 2 | sseq12d 3634 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝐴 ·𝑜
𝑥) ⊆ (𝐵 ·𝑜
𝑥) ↔ (𝐴 ·𝑜
∅) ⊆ (𝐵
·𝑜 ∅))) |
| 4 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦)) |
| 5 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦)) |
| 6 | 4, 5 | sseq12d 3634 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) |
| 7 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦)) |
| 8 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦)) |
| 9 | 7, 8 | sseq12d 3634 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))) |
| 10 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶)) |
| 11 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶)) |
| 12 | 10, 11 | sseq12d 3634 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))) |
| 13 | | om0 7597 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 ·𝑜
∅) = ∅) |
| 14 | | 0ss 3972 |
. . . . . . 7
⊢ ∅
⊆ (𝐵
·𝑜 ∅) |
| 15 | 13, 14 | syl6eqss 3655 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 ·𝑜
∅) ⊆ (𝐵
·𝑜 ∅)) |
| 16 | 15 | ad2antrr 762 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ·𝑜 ∅)
⊆ (𝐵
·𝑜 ∅)) |
| 17 | | omcl 7616 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜
𝑦) ∈
On) |
| 18 | 17 | 3adant2 1080 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜
𝑦) ∈
On) |
| 19 | | omcl 7616 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜
𝑦) ∈
On) |
| 20 | 19 | 3adant1 1079 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜
𝑦) ∈
On) |
| 21 | | simp1 1061 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On) |
| 22 | | oawordri 7630 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ·𝑜
𝑦) ∈ On ∧ (𝐵 ·𝑜
𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜
𝑦) ⊆ (𝐵 ·𝑜
𝑦) → ((𝐴 ·𝑜
𝑦) +𝑜
𝐴) ⊆ ((𝐵 ·𝑜
𝑦) +𝑜
𝐴))) |
| 23 | 18, 20, 21, 22 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜
𝑦) ⊆ (𝐵 ·𝑜
𝑦) → ((𝐴 ·𝑜
𝑦) +𝑜
𝐴) ⊆ ((𝐵 ·𝑜
𝑦) +𝑜
𝐴))) |
| 24 | 23 | imp 445 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·𝑜
𝑦) ⊆ (𝐵 ·𝑜
𝑦)) → ((𝐴 ·𝑜
𝑦) +𝑜
𝐴) ⊆ ((𝐵 ·𝑜
𝑦) +𝑜
𝐴)) |
| 25 | 24 | adantrl 752 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴)) |
| 26 | | oaword 7629 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·𝑜
𝑦) ∈ On) → (𝐴 ⊆ 𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))) |
| 27 | 20, 26 | syld3an3 1371 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))) |
| 28 | 27 | biimpa 501 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) |
| 29 | 28 | adantrr 753 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) |
| 30 | 25, 29 | sstrd 3613 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) |
| 31 | | omsuc 7606 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜
suc 𝑦) = ((𝐴 ·𝑜
𝑦) +𝑜
𝐴)) |
| 32 | 31 | 3adant2 1080 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜
suc 𝑦) = ((𝐴 ·𝑜
𝑦) +𝑜
𝐴)) |
| 33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)) |
| 34 | | omsuc 7606 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜
suc 𝑦) = ((𝐵 ·𝑜
𝑦) +𝑜
𝐵)) |
| 35 | 34 | 3adant1 1079 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜
suc 𝑦) = ((𝐵 ·𝑜
𝑦) +𝑜
𝐵)) |
| 36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) |
| 37 | 30, 33, 36 | 3sstr4d 3648 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)) |
| 38 | 37 | exp520 1288 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ⊆ 𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)))))) |
| 39 | 38 | com3r 87 |
. . . . . 6
⊢ (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)))))) |
| 40 | 39 | imp4c 617 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)))) |
| 41 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 42 | | ss2iun 4536 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝐵 ·𝑜 𝑦)) |
| 43 | | omlim 7613 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦)) |
| 44 | 43 | ad2ant2rl 785 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦)) |
| 45 | | omlim 7613 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ·𝑜 𝑦)) |
| 46 | 45 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ·𝑜 𝑦)) |
| 47 | 44, 46 | sseq12d 3634 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝐵 ·𝑜 𝑦))) |
| 48 | 42, 47 | syl5ibr 236 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))) |
| 49 | 48 | anandirs 874 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))) |
| 50 | 41, 49 | mpanr1 719 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))) |
| 51 | 50 | expcom 451 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(∀𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))) |
| 52 | 51 | adantrd 484 |
. . . . 5
⊢ (Lim
𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (∀𝑦 ∈ 𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))) |
| 53 | 3, 6, 9, 12, 16, 40, 52 | tfinds3 7064 |
. . . 4
⊢ (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))) |
| 54 | 53 | expd 452 |
. . 3
⊢ (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))) |
| 55 | 54 | 3impib 1262 |
. 2
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))) |
| 56 | 55 | 3coml 1272 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))) |