MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 7660
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 ∅))
2 oveq2 6658 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
32oveq2d 6666 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
41, 3eqeq12d 2637 . . . . 5 (𝑥 = ∅ → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅))))
5 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
6 oveq2 6658 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
76oveq2d 6666 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
85, 7eqeq12d 2637 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦))
10 oveq2 6658 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1110oveq2d 6666 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))
129, 11eqeq12d 2637 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
13 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
14 oveq2 6658 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
1514oveq2d 6666 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
1613, 15eqeq12d 2637 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
17 omcl 7616 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
18 om0 7597 . . . . . . 7 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
20 om0 7597 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·𝑜 ∅) = ∅)
2120oveq2d 6666 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = (𝐴 ·𝑜 ∅))
22 om0 7597 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
2321, 22sylan9eqr 2678 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = ∅)
2419, 23eqtr4d 2659 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
25 oveq1 6657 . . . . . . . . 9 (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
26 omsuc 7606 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
2717, 26stoic3 1701 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
28 omsuc 7606 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
29283adant1 1079 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3029oveq2d 6666 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
31 omcl 7616 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
32 odi 7659 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3331, 32syl3an2 1360 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
34333exp 1264 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
3534expd 452 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3635com34 91 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3736pm2.43d 53 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
38373imp 1256 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3930, 38eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
4027, 39eqeq12d 2637 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) ↔ (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))
4125, 40syl5ibr 236 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
42413exp 1264 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4342com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4443impd 447 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))))
4517ancoms 469 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
46 vex 3203 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 7613 . . . . . . . . . . . . . . 15 (((𝐴 ·𝑜 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4846, 47mpanr1 719 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4945, 48sylan 488 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5049an32s 846 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5150ad2antrr 762 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
52 iuneq2 4537 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
53 limelon 5788 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 706 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 592 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 7646 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
5856, 57sylan 488 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
59 ssid 3624 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))
60 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
6160sseq2d 3633 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) ↔ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
6261rspcev 3309 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6359, 62mpan2 707 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6458, 63syl6 35 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧)))
6564ralrimiv 2965 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
66 iunss2 4565 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6867adantlr 751 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
69 omcl 7616 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·𝑜 𝑥) ∈ On)
7054, 69sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·𝑜 𝑥) ∈ On)
71 onelon 5748 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7372adantlr 751 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
74 omordlim 7657 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦))
7574ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7646, 75mpanr1 719 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7776ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
78 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·𝑜 𝑦) ∈ On)
81 onelss 5766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·𝑜 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
82813ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
83 omwordi 7651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
8482, 83syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
85843exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·𝑜 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8680, 85syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8786exp4d 637 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))))
8887imp32 449 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8988com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9089imp 445 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))))
9190reximdvai 3015 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9277, 91syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9392exp31 630 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9493imp4c 617 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9573, 94mpcom 38 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9695ralrimiva 2966 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
97 iunss2 4565 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9998adantr 481 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
10068, 99eqssd 3620 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
101 omlimcl 7658 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
10246, 101mpanlr1 722 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
103 ovex 6678 . . . . . . . . . . . . . . . . 17 (𝐵 ·𝑜 𝑥) ∈ V
104 omlim 7613 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·𝑜 𝑥) ∈ V ∧ Lim (𝐵 ·𝑜 𝑥))) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
105103, 104mpanr1 719 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·𝑜 𝑥)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
106102, 105sylan2 491 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
107106ancoms 469 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
108107an32s 846 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
109100, 108eqtr4d 2659 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11052, 109sylan9eqr 2678 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11151, 110eqtrd 2656 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
112111exp31 630 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
113 eloni 5733 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 5779 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2837 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 762 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 6658 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 ∅))
119118, 22sylan9eqr 2678 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 𝐵) = ∅)
120119oveq1d 6665 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
121 om0r 7619 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·𝑜 𝑥) = ∅)
122120, 121sylan9eqr 2678 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
123122anassrs 680 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
124 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
125124, 121sylan9eqr 2678 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·𝑜 𝑥) = ∅)
126125oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 ∅))
127126, 22sylan9eq 2676 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
128127an32s 846 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
129123, 128eqtr4d 2659 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
130129ex 450 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
13154, 130sylan 488 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
132131adantll 750 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
133117, 132sylbird 250 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
134133a1dd 50 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
135112, 134pm2.61d 170 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
136135exp31 630 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
137136com3l 89 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
138137impd 447 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 7064 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
140139expd 452 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
141140com3l 89 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
1421413imp 1256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  oeoalem  7676  omabs  7727
  Copyright terms: Public domain W3C validator