| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imp4c | Structured version Visualization version Unicode version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp4.1 |
|
| Ref | Expression |
|---|---|
| imp4c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 |
. . 3
| |
| 2 | 1 | impd 447 |
. 2
|
| 3 | 2 | impd 447 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: imp44 622 imp5g 626 omordi 7646 omwordri 7652 omass 7660 oewordri 7672 umgrclwwlksge2 26912 upgr4cycl4dv4e 27045 elspansn5 28433 atcvat3i 29255 mdsymlem5 29266 sumdmdlem 29277 cvrat4 34729 sprsymrelfolem2 41743 |
| Copyright terms: Public domain | W3C validator |