MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglbb Structured version   Visualization version   GIF version

Theorem infglbb 8397
Description: Bidirectional form of infglb 8396. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
infglbb.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
infglbb ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infglbb
StepHypRef Expression
1 df-inf 8349 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
21breq1i 4660 . 2 (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
3 simpr 477 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
4 infcl.1 . . . . . . 7 (𝜑𝑅 Or 𝐴)
5 cnvso 5674 . . . . . . 7 (𝑅 Or 𝐴𝑅 Or 𝐴)
64, 5sylib 208 . . . . . 6 (𝜑𝑅 Or 𝐴)
7 infcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
84, 7infcllem 8393 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
96, 8supcl 8364 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
109adantr 481 . . . 4 ((𝜑𝐶𝐴) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 5303 . . . . 5 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1211bicomd 213 . . . 4 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
133, 10, 12syl2anc 693 . . 3 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
14 infglbb.3 . . . 4 (𝜑𝐵𝐴)
156, 8, 14suplub2 8367 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
16 vex 3203 . . . . 5 𝑧 ∈ V
17 brcnvg 5303 . . . . 5 ((𝐶𝐴𝑧 ∈ V) → (𝐶𝑅𝑧𝑧𝑅𝐶))
183, 16, 17sylancl 694 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅𝑧𝑧𝑅𝐶))
1918rexbidv 3052 . . 3 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
2013, 15, 193bitrd 294 . 2 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
212, 20syl5bb 272 1 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653   Or wor 5034  ccnv 5113  supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-iota 5851  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by:  infregelb  11007  infxrgelb  12165  infxrge0glb  29530  infxrglb  39556  infrglb  39822
  Copyright terms: Public domain W3C validator