MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplub2 Structured version   Visualization version   GIF version

Theorem suplub2 8367
Description: Bidirectional form of suplub 8366. (Contributed by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
suplub2.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
suplub2 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦)

Proof of Theorem suplub2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supmo.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 supcl.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2suplub 8366 . . 3 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
43expdimp 453 . 2 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
5 breq2 4657 . . . 4 (𝑧 = 𝑤 → (𝐶𝑅𝑧𝐶𝑅𝑤))
65cbvrexv 3172 . . 3 (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑤𝐵 𝐶𝑅𝑤)
7 breq2 4657 . . . . . . 7 (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅𝑤))
87biimprd 238 . . . . . 6 (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
98a1i 11 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅))))
101ad2antrr 762 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝑅 Or 𝐴)
11 simplr 792 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝐶𝐴)
12 suplub2.3 . . . . . . . . 9 (𝜑𝐵𝐴)
1312adantr 481 . . . . . . . 8 ((𝜑𝐶𝐴) → 𝐵𝐴)
1413sselda 3603 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝑤𝐴)
151, 2supcl 8364 . . . . . . . 8 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
1615ad2antrr 762 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
17 sotr 5057 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝑤𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)) → ((𝐶𝑅𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1810, 11, 14, 16, 17syl13anc 1328 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ((𝐶𝑅𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1918expcomd 454 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅))))
201, 2supub 8365 . . . . . . . 8 (𝜑 → (𝑤𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2120adantr 481 . . . . . . 7 ((𝜑𝐶𝐴) → (𝑤𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2221imp 445 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
23 sotric 5061 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝑤𝐴)) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅))))
2410, 16, 14, 23syl12anc 1324 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅))))
2524con2bid 344 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ((sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2622, 25mpbird 247 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)))
279, 19, 26mpjaod 396 . . . 4 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
2827rexlimdva 3031 . . 3 ((𝜑𝐶𝐴) → (∃𝑤𝐵 𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
296, 28syl5bi 232 . 2 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
304, 29impbid 202 1 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   Or wor 5034  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-iota 5851  df-riota 6611  df-sup 8348
This theorem is referenced by:  infglbb  8397  suprlub  10987  supxrlub  12155
  Copyright terms: Public domain W3C validator