MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvso Structured version   Visualization version   GIF version

Theorem cnvso 5674
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvso (𝑅 Or 𝐴𝑅 Or 𝐴)

Proof of Theorem cnvso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpo 5673 . . 3 (𝑅 Po 𝐴𝑅 Po 𝐴)
2 ralcom 3098 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
3 vex 3203 . . . . . . 7 𝑦 ∈ V
4 vex 3203 . . . . . . 7 𝑥 ∈ V
53, 4brcnv 5305 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
6 equcom 1945 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
74, 3brcnv 5305 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 6, 73orbi123i 1252 . . . . 5 ((𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
982ralbii 2981 . . . 4 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
102, 9bitr4i 267 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦))
111, 10anbi12i 733 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
12 df-so 5036 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
13 df-so 5036 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥𝑦 = 𝑥𝑥𝑅𝑦)))
1411, 12, 133bitr4i 292 1 (𝑅 Or 𝐴𝑅 Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3o 1036  wral 2912   class class class wbr 4653   Po wpo 5033   Or wor 5034  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122
This theorem is referenced by:  infexd  8389  eqinf  8390  infval  8392  infcl  8394  inflb  8395  infglb  8396  infglbb  8397  fiinfcl  8407  infltoreq  8408  infempty  8412  infiso  8413  wofib  8450  oemapso  8579  cflim2  9085  fin23lem40  9173  gtso  10119  tosglb  29670  xrsclat  29680  xrge0iifiso  29981  inffzOLD  31615  socnv  31654  nomaxmo  31847  welb  33531  xrgtso  39561
  Copyright terms: Public domain W3C validator