MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infval Structured version   Visualization version   GIF version

Theorem infval 8392
Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infval (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infval
StepHypRef Expression
1 df-inf 8349 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . . 5 (𝜑𝑅 Or 𝐴)
3 cnvso 5674 . . . . 5 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 208 . . . 4 (𝜑𝑅 Or 𝐴)
54supval2 8361 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 vex 3203 . . . . . . . . 9 𝑥 ∈ V
7 vex 3203 . . . . . . . . 9 𝑦 ∈ V
86, 7brcnv 5305 . . . . . . . 8 (𝑥𝑅𝑦𝑦𝑅𝑥)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
109notbid 308 . . . . . 6 (𝜑 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1110ralbidv 2986 . . . . 5 (𝜑 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
127, 6brcnv 5305 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1312a1i 11 . . . . . . 7 (𝜑 → (𝑦𝑅𝑥𝑥𝑅𝑦))
14 vex 3203 . . . . . . . . . 10 𝑧 ∈ V
157, 14brcnv 5305 . . . . . . . . 9 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 11 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716rexbidv 3052 . . . . . . 7 (𝜑 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝑦))
1813, 17imbi12d 334 . . . . . 6 (𝜑 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1918ralbidv 2986 . . . . 5 (𝜑 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2011, 19anbi12d 747 . . . 4 (𝜑 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
2120riotabidv 6613 . . 3 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
225, 21eqtrd 2656 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
231, 22syl5eq 2668 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wral 2912  wrex 2913   class class class wbr 4653   Or wor 5034  ccnv 5113  crio 6610  supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-iota 5851  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator