MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem2 Structured version   Visualization version   GIF version

Theorem initoeu2lem2 16665
Description: Lemma 2 for initoeu2 16666. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem2 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Distinct variable groups:   𝐴,𝑔,𝑓   𝐵,𝑔,𝑓   𝐶,𝑓,𝑔   𝜑,𝑔,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓   𝐷,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝐾   𝑔,𝑋   ,𝑔

Proof of Theorem initoeu2lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . . . . . . . 10 (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V
2 eleq1 2689 . . . . . . . . . . 11 (𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) → (𝑔 ∈ (𝐵𝐻𝐷) ↔ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
32spcegv 3294 . . . . . . . . . 10 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
41, 3mp1i 13 . . . . . . . . 9 (𝜑 → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
54com12 32 . . . . . . . 8 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
653ad2ant3 1084 . . . . . . 7 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
76com12 32 . . . . . 6 (𝜑 → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
87a1d 25 . . . . 5 (𝜑 → ((𝐴𝑋𝐵𝑋𝐷𝑋) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))))
983imp 1256 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
109adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
11 simpll1 1100 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝜑)
12 simpll2 1101 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
13 3simpb 1059 . . . . . . . . . . 11 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
14133ad2ant3 1084 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1514adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1615adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
17 simplr 792 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
18 simpl32 1143 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
1918adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
20 simpr 477 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 ∈ (𝐵𝐻𝐷))
21 initoeu1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
22 initoeu1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (InitO‘𝐶))
23 initoeu2lem.x . . . . . . . . . 10 𝑋 = (Base‘𝐶)
24 initoeu2lem.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
25 initoeu2lem.i . . . . . . . . . 10 𝐼 = (Iso‘𝐶)
26 initoeu2lem.o . . . . . . . . . 10 = (comp‘𝐶)
2721, 22, 23, 24, 25, 26initoeu2lem1 16664 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
2827imp 445 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
2911, 12, 16, 17, 19, 20, 28syl33anc 1341 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3029adantrr 753 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
31 simpll1 1100 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝜑)
32 simpll2 1101 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
3315adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
34 simplr 792 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
3518adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
36 simpr 477 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∈ (𝐵𝐻𝐷))
3721, 22, 23, 24, 25, 26initoeu2lem1 16664 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
3837imp 445 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3931, 32, 33, 34, 35, 36, 38syl33anc 1341 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4039adantrl 752 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4130, 40eqtr4d 2659 . . . . 5 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = )
4241ex 450 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
4342alrimivv 1856 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
44 eleq1 2689 . . . 4 (𝑔 = → (𝑔 ∈ (𝐵𝐻𝐷) ↔ ∈ (𝐵𝐻𝐷)))
4544eu4 2518 . . 3 (∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷) ↔ (∃𝑔 𝑔 ∈ (𝐵𝐻𝐷) ∧ ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = )))
4610, 43, 45sylanbrc 698 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))
4746ex 450 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  Vcvv 3200  cop 4183  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Isociso 16406  InitOcinito 16638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  initoeu2  16666
  Copyright terms: Public domain W3C validator