MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Structured version   Visualization version   Unicode version

Theorem intasym 5511
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Distinct variable group:    x, y, R

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5503 . . 3  |-  Rel  `' R
2 relin2 5237 . . 3  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3 ssrel 5207 . . 3  |-  ( Rel  ( R  i^i  `' R )  ->  (
( R  i^i  `' R )  C_  _I  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) ) )
41, 2, 3mp2b 10 . 2  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  ->  <. x ,  y >.  e.  _I  ) )
5 elin 3796 . . . . 5  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
6 df-br 4654 . . . . . 6  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
7 vex 3203 . . . . . . . 8  |-  x  e. 
_V
8 vex 3203 . . . . . . . 8  |-  y  e. 
_V
97, 8brcnv 5305 . . . . . . 7  |-  ( x `' R y  <->  y R x )
10 df-br 4654 . . . . . . 7  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
119, 10bitr3i 266 . . . . . 6  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
126, 11anbi12i 733 . . . . 5  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
135, 12bitr4i 267 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
14 df-br 4654 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
158ideq 5274 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
1614, 15bitr3i 266 . . . 4  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1713, 16imbi12i 340 . . 3  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<->  ( ( x R y  /\  y R x )  ->  x  =  y ) )
18172albii 1748 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<-> 
A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
194, 18bitri 264 1  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    _I cid 5023   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator