MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 19315
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
isassa (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Distinct variable groups:   𝑥,𝑟,𝑦   𝐵,𝑟   𝐹,𝑟   𝑉,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   × ,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fveq2 6191 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 isassa.f . . . . 5 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2674 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
5 simpr 477 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → 𝑓 = 𝐹)
65eleq1d 2686 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (𝑓 ∈ CRing ↔ 𝐹 ∈ CRing))
75fveq2d 6195 . . . . . . 7 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
8 isassa.b . . . . . . 7 𝐵 = (Base‘𝐹)
97, 8syl6eqr 2674 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = 𝐵)
10 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 isassa.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
1210, 11syl6eqr 2674 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
13 fvexd 6203 . . . . . . . . . 10 (𝑤 = 𝑊 → ( ·𝑠𝑤) ∈ V)
14 fvexd 6203 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → (.r𝑤) ∈ V)
15 simpr 477 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = (.r𝑤))
16 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1716ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = (.r𝑊))
18 isassa.t . . . . . . . . . . . . . . . 16 × = (.r𝑊)
1917, 18syl6eqr 2674 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = × )
2015, 19eqtrd 2656 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = × )
21 simplr 792 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = ( ·𝑠𝑤))
22 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
2322ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
24 isassa.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
2523, 24syl6eqr 2674 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = · )
2621, 25eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = · )
2726oveqd 6667 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
28 eqidd 2623 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑦 = 𝑦)
2920, 27, 28oveq123d 6671 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦))
30 eqidd 2623 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑟 = 𝑟)
3120oveqd 6667 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡𝑦) = (𝑥 × 𝑦))
3226, 30, 31oveq123d 6671 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦)))
3329, 32eqeq12d 2637 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))))
34 eqidd 2623 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑥 = 𝑥)
3526oveqd 6667 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑦) = (𝑟 · 𝑦))
3620, 34, 35oveq123d 6671 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦)))
3736, 32eqeq12d 2637 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
3833, 37anbi12d 747 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3914, 38sbcied 3472 . . . . . . . . . 10 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → ([(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4013, 39sbcied 3472 . . . . . . . . 9 (𝑤 = 𝑊 → ([( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4112, 40raleqbidv 3152 . . . . . . . 8 (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4212, 41raleqbidv 3152 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4342adantr 481 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
449, 43raleqbidv 3152 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
456, 44anbi12d 747 . . . 4 ((𝑤 = 𝑊𝑓 = 𝐹) → ((𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
461, 4, 45sbcied2 3473 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
47 df-assa 19312 . . 3 AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))}
4846, 47elrab2 3366 . 2 (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
49 anass 681 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
50 elin 3796 . . . . 5 (𝑊 ∈ (LMod ∩ Ring) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
5150anbi1i 731 . . . 4 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
52 df-3an 1039 . . . 4 ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
5351, 52bitr4i 267 . . 3 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing))
5453anbi1i 731 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
5548, 49, 543bitr2i 288 1 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435  cin 3573  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  CRingccrg 18548  LModclmod 18863  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-assa 19312
This theorem is referenced by:  assalem  19316  assalmod  19319  assaring  19320  assasca  19321  isassad  19323  assapropd  19327
  Copyright terms: Public domain W3C validator